{"title":"碳薄膜与金属衬底的粘合。","authors":"H S Shim, N K Agarwal, A D Haubold","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>As part of the development of carbon-coated prosthetic devices, the adhesion of thin carbon films to metallic substrates has been studied. The bond strength of carbon films about 5000 A thick on Ti-6A1-4V and stainless steel was measured in a pull test and found to be greater than 4700 psi. Auger electron spectroscopy showed a reactive film/substrate interface. The ultimate bond strength was found to be dependent on the substrate and the deposition parameters.</p>","PeriodicalId":75990,"journal":{"name":"Journal of bioengineering","volume":"1 1","pages":"45-50"},"PeriodicalIF":0.0000,"publicationDate":"1976-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The adhesion of thin carbon films to metallic substrates.\",\"authors\":\"H S Shim, N K Agarwal, A D Haubold\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As part of the development of carbon-coated prosthetic devices, the adhesion of thin carbon films to metallic substrates has been studied. The bond strength of carbon films about 5000 A thick on Ti-6A1-4V and stainless steel was measured in a pull test and found to be greater than 4700 psi. Auger electron spectroscopy showed a reactive film/substrate interface. The ultimate bond strength was found to be dependent on the substrate and the deposition parameters.</p>\",\"PeriodicalId\":75990,\"journal\":{\"name\":\"Journal of bioengineering\",\"volume\":\"1 1\",\"pages\":\"45-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioengineering","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The adhesion of thin carbon films to metallic substrates.
As part of the development of carbon-coated prosthetic devices, the adhesion of thin carbon films to metallic substrates has been studied. The bond strength of carbon films about 5000 A thick on Ti-6A1-4V and stainless steel was measured in a pull test and found to be greater than 4700 psi. Auger electron spectroscopy showed a reactive film/substrate interface. The ultimate bond strength was found to be dependent on the substrate and the deposition parameters.