SRAM写驱动的BTI分析

I. Agbo, M. Taouil, S. Hamdioui, P. Weckx, S. Cosemans, F. Catthoor
{"title":"SRAM写驱动的BTI分析","authors":"I. Agbo, M. Taouil, S. Hamdioui, P. Weckx, S. Cosemans, F. Catthoor","doi":"10.1109/IDT.2015.7396744","DOIUrl":null,"url":null,"abstract":"Bias Temperature Instability (BTI) has become a major reliability challenge for nano-scaled devices. This paper presents BTI analysis for the SRAM write driver. Its evaluation metric, the write delay (WD), is analyzed for various supply voltages and temperatures for three technology nodes, i.e., 45nm, 32nm, and 22nm. The results show that as technology scales down, BTI impact on write delay (i.e., its average and +/- 3σ variations) increases; the 22nm design can degrade up to 1.9x more than the 45nm design at nominal operation conditions. In addition, the result shows that an increment in supply voltage (i.e., from -10% Vdd to +10% Vdd) increases the relative write delay during the operational lifetime. Furthermore, the results show that a temperature increment accelerates the BTI induced write delay significantly; while at 298K the degradation is up to 4.7%, it increases to 41.4% at 398K for the 22nm technology node.","PeriodicalId":321810,"journal":{"name":"2015 10th International Design & Test Symposium (IDT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"BTI analysis of SRAM write driver\",\"authors\":\"I. Agbo, M. Taouil, S. Hamdioui, P. Weckx, S. Cosemans, F. Catthoor\",\"doi\":\"10.1109/IDT.2015.7396744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bias Temperature Instability (BTI) has become a major reliability challenge for nano-scaled devices. This paper presents BTI analysis for the SRAM write driver. Its evaluation metric, the write delay (WD), is analyzed for various supply voltages and temperatures for three technology nodes, i.e., 45nm, 32nm, and 22nm. The results show that as technology scales down, BTI impact on write delay (i.e., its average and +/- 3σ variations) increases; the 22nm design can degrade up to 1.9x more than the 45nm design at nominal operation conditions. In addition, the result shows that an increment in supply voltage (i.e., from -10% Vdd to +10% Vdd) increases the relative write delay during the operational lifetime. Furthermore, the results show that a temperature increment accelerates the BTI induced write delay significantly; while at 298K the degradation is up to 4.7%, it increases to 41.4% at 398K for the 22nm technology node.\",\"PeriodicalId\":321810,\"journal\":{\"name\":\"2015 10th International Design & Test Symposium (IDT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Design & Test Symposium (IDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2015.7396744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Design & Test Symposium (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2015.7396744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

偏置温度不稳定性(BTI)已成为纳米级器件可靠性的主要挑战。本文对SRAM写入驱动进行了BTI分析。分析了45nm、32nm和22nm三个技术节点在不同电源电压和温度下的写入延迟(WD)。结果表明,随着技术规模的缩小,BTI对写入延迟的影响(即其平均值和+/- 3σ变化)增加;在标准操作条件下,22nm设计可以比45nm设计降低1.9倍。此外,结果表明,电源电压的增加(即从-10% Vdd到+10% Vdd)增加了工作寿命期间的相对写延迟。结果表明,温度升高会显著加速BTI诱导的写入延迟;而在298K时,退化率高达4.7%,在22nm技术节点上,它在398K时增加到41.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BTI analysis of SRAM write driver
Bias Temperature Instability (BTI) has become a major reliability challenge for nano-scaled devices. This paper presents BTI analysis for the SRAM write driver. Its evaluation metric, the write delay (WD), is analyzed for various supply voltages and temperatures for three technology nodes, i.e., 45nm, 32nm, and 22nm. The results show that as technology scales down, BTI impact on write delay (i.e., its average and +/- 3σ variations) increases; the 22nm design can degrade up to 1.9x more than the 45nm design at nominal operation conditions. In addition, the result shows that an increment in supply voltage (i.e., from -10% Vdd to +10% Vdd) increases the relative write delay during the operational lifetime. Furthermore, the results show that a temperature increment accelerates the BTI induced write delay significantly; while at 298K the degradation is up to 4.7%, it increases to 41.4% at 398K for the 22nm technology node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信