矩阵子集盲源分离的近似对角化方法

A. Tomé, E. Lang
{"title":"矩阵子集盲源分离的近似对角化方法","authors":"A. Tomé, E. Lang","doi":"10.1109/ISSPA.2003.1224826","DOIUrl":null,"url":null,"abstract":"In blind source separation problems it is assumed that the approximate diagonalization of a matrix set achieves more robust solutions than the simultaneous diagonalization of a matrix pencil. In this work we will analyse approximate diagonalization methods using a generalized eigendecomposition (GED) of any pair of a given matrix set. The constraints of GHD solutions provide a criterion to choose a matrix subset even when none of the matrices follows an ideal model. We also present some numerical simulations comparing the performance of the solutions achieved by the referred approaches.","PeriodicalId":264814,"journal":{"name":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Approximate diagonalization approach to blind source separation with a subset of matrices\",\"authors\":\"A. Tomé, E. Lang\",\"doi\":\"10.1109/ISSPA.2003.1224826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In blind source separation problems it is assumed that the approximate diagonalization of a matrix set achieves more robust solutions than the simultaneous diagonalization of a matrix pencil. In this work we will analyse approximate diagonalization methods using a generalized eigendecomposition (GED) of any pair of a given matrix set. The constraints of GHD solutions provide a criterion to choose a matrix subset even when none of the matrices follows an ideal model. We also present some numerical simulations comparing the performance of the solutions achieved by the referred approaches.\",\"PeriodicalId\":264814,\"journal\":{\"name\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"volume\":\"280 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2003.1224826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2003.1224826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在盲源分离问题中,假定矩阵集的近似对角化比矩阵束的同时对角化获得更强的鲁棒解。在这项工作中,我们将分析使用广义特征分解(GED)的近似对角化方法的任何一对给定的矩阵集。GHD解决方案的约束提供了选择矩阵子集的标准,即使没有一个矩阵遵循理想模型。我们还提供了一些数值模拟,比较了上述方法所获得的解的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate diagonalization approach to blind source separation with a subset of matrices
In blind source separation problems it is assumed that the approximate diagonalization of a matrix set achieves more robust solutions than the simultaneous diagonalization of a matrix pencil. In this work we will analyse approximate diagonalization methods using a generalized eigendecomposition (GED) of any pair of a given matrix set. The constraints of GHD solutions provide a criterion to choose a matrix subset even when none of the matrices follows an ideal model. We also present some numerical simulations comparing the performance of the solutions achieved by the referred approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信