序列地震作用下钢板剪力墙对钢筋混凝土框架剩余承载力的影响

{"title":"序列地震作用下钢板剪力墙对钢筋混凝土框架剩余承载力的影响","authors":"","doi":"10.33140/eesrr.05.01.10","DOIUrl":null,"url":null,"abstract":"The residual capacity of a damaged structure after the main earthquake is equal to the smallest spectral acceleration of the first mode, which causes local or general failure during the aftershock. In this research, the effect of steel plate shear wall on residual capacity of the reinforced concrete frame under seismic sequence has been investigated. Based on this, four systems of 4, 8, 12, and 24 stories, which represent short, intermediate, tall, are modeled in finite element software and subject to three sets of single and real seismic sequence, taking into account the damage, the effects of mainshock earthquakes have been analyzed under aftershock earthquakes nonlinear increment dynamic analysis (IDA). The analysis showed that in the real seismic sequence, the residual capacity of a reinforced concrete frame with steel plate shear wall in short and intermediate structures on average 3.6 times and tall structures up to 4.25 times compared to the residual capacity of the reinforced concrete frame without steel plate shear wall. Also, in the real seismic sequence, the residual capacity of the structure decreased with increasing the height of short to intermediate structures and intermediate to tall structures, so that this capacity reduction decreased by an average of 70% in reinforced concrete frame with and without steel plate shear wall.","PeriodicalId":298809,"journal":{"name":"Earth & Environmental Science Research & Reviews","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Steel Plate Shear Wall on Residual Capacity of Reinforced ConcreteFrame Under Sequence Earthquakes by Incremental Dynamic Analysis\",\"authors\":\"\",\"doi\":\"10.33140/eesrr.05.01.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The residual capacity of a damaged structure after the main earthquake is equal to the smallest spectral acceleration of the first mode, which causes local or general failure during the aftershock. In this research, the effect of steel plate shear wall on residual capacity of the reinforced concrete frame under seismic sequence has been investigated. Based on this, four systems of 4, 8, 12, and 24 stories, which represent short, intermediate, tall, are modeled in finite element software and subject to three sets of single and real seismic sequence, taking into account the damage, the effects of mainshock earthquakes have been analyzed under aftershock earthquakes nonlinear increment dynamic analysis (IDA). The analysis showed that in the real seismic sequence, the residual capacity of a reinforced concrete frame with steel plate shear wall in short and intermediate structures on average 3.6 times and tall structures up to 4.25 times compared to the residual capacity of the reinforced concrete frame without steel plate shear wall. Also, in the real seismic sequence, the residual capacity of the structure decreased with increasing the height of short to intermediate structures and intermediate to tall structures, so that this capacity reduction decreased by an average of 70% in reinforced concrete frame with and without steel plate shear wall.\",\"PeriodicalId\":298809,\"journal\":{\"name\":\"Earth & Environmental Science Research & Reviews\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth & Environmental Science Research & Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/eesrr.05.01.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth & Environmental Science Research & Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/eesrr.05.01.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主震后受损结构的剩余承载力等于第一模态的最小谱加速度,它在余震中引起局部或整体破坏。本文研究了地震序列作用下钢板剪力墙对钢筋混凝土框架剩余承载力的影响。在此基础上,采用有限元软件对4层、8层、12层和24层的矮、中、高4层体系进行建模,并在3组单次地震序列和实次地震序列的作用下,考虑破坏程度,分析了余震非线性增量动力分析(IDA)对主震的影响。分析表明,在实际地震序列中,与不带钢板剪力墙的钢筋混凝土框架相比,带钢板剪力墙的钢筋混凝土框架在短、中间结构中的剩余承载力平均是无钢板剪力墙的钢筋混凝土框架的3.6倍,高层结构的剩余承载力最高可达4.25倍。在实际地震序列中,随着中短结构高度的增加和中高结构高度的增加,结构的剩余承载力减小,有钢板剪力墙和无钢板剪力墙的钢筋混凝土框架的剩余承载力平均减小70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of Steel Plate Shear Wall on Residual Capacity of Reinforced ConcreteFrame Under Sequence Earthquakes by Incremental Dynamic Analysis
The residual capacity of a damaged structure after the main earthquake is equal to the smallest spectral acceleration of the first mode, which causes local or general failure during the aftershock. In this research, the effect of steel plate shear wall on residual capacity of the reinforced concrete frame under seismic sequence has been investigated. Based on this, four systems of 4, 8, 12, and 24 stories, which represent short, intermediate, tall, are modeled in finite element software and subject to three sets of single and real seismic sequence, taking into account the damage, the effects of mainshock earthquakes have been analyzed under aftershock earthquakes nonlinear increment dynamic analysis (IDA). The analysis showed that in the real seismic sequence, the residual capacity of a reinforced concrete frame with steel plate shear wall in short and intermediate structures on average 3.6 times and tall structures up to 4.25 times compared to the residual capacity of the reinforced concrete frame without steel plate shear wall. Also, in the real seismic sequence, the residual capacity of the structure decreased with increasing the height of short to intermediate structures and intermediate to tall structures, so that this capacity reduction decreased by an average of 70% in reinforced concrete frame with and without steel plate shear wall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信