Haonan Zhang, Jingyue Pan, Long Wen, Shuzhan Shen, Yunfeng Zhang, Peiru Wang, Qian Cheng, Xiuli Wang, Xueding Wang
{"title":"一种新的基于发光二极管的光声评价方法及其临床试验(会议报告)","authors":"Haonan Zhang, Jingyue Pan, Long Wen, Shuzhan Shen, Yunfeng Zhang, Peiru Wang, Qian Cheng, Xiuli Wang, Xueding Wang","doi":"10.1117/12.2507874","DOIUrl":null,"url":null,"abstract":"Port-wine stain (PWS) is a discoloration of human skin caused by a vascular anomaly (i.e., capillary malformation in the skin). In the past years, several techniques have been developed for characterization and treatment evaluation of PWS. However, each of them has some limitations. Optical methods working in the ballistic regime, such as dermoscopy and VISIA, do not have sufficient penetration to cover the entire scale of PWS. High frequency ultrasound, although with better imaging depth, does not offer sufficient contrast to differentiate PWS and normal skin tissue. Therefore, current endpoint clinical assessment for PWS still relies on physicians’ subjective judgement. In this study, photoacoustic (PA) imaging utilizing light emitting diodes (LED) as the light source was adapted to the evaluation of PWS and response to photodynamic therapy (PDT). PA images as well as US images of the targeted skin area before and at different time points after the treatment were acquired. The imaging results from adults and children were also compared. The imaging findings demonstrate that the PWS levels of adult patients are significantly higher than children (p<0.01), which fits well with the knowledge that the vessel malefaction degree develops with patients’ age. The 2-month follow-up study on four children shows that the average PWS level reduced for 33.60%onstrat (p<0.01) as a result of 3-4 times of PDT treatment. This initial clinical trial on patients suggests PA imaging holds potential for quantitative assessment of PWS in clinical settings.","PeriodicalId":206495,"journal":{"name":"Photons Plus Ultrasound: Imaging and Sensing 2019","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel light emitting diodes based photoacoustic evaluation method for port wine stain and its clinical trial (Conference Presentation)\",\"authors\":\"Haonan Zhang, Jingyue Pan, Long Wen, Shuzhan Shen, Yunfeng Zhang, Peiru Wang, Qian Cheng, Xiuli Wang, Xueding Wang\",\"doi\":\"10.1117/12.2507874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Port-wine stain (PWS) is a discoloration of human skin caused by a vascular anomaly (i.e., capillary malformation in the skin). In the past years, several techniques have been developed for characterization and treatment evaluation of PWS. However, each of them has some limitations. Optical methods working in the ballistic regime, such as dermoscopy and VISIA, do not have sufficient penetration to cover the entire scale of PWS. High frequency ultrasound, although with better imaging depth, does not offer sufficient contrast to differentiate PWS and normal skin tissue. Therefore, current endpoint clinical assessment for PWS still relies on physicians’ subjective judgement. In this study, photoacoustic (PA) imaging utilizing light emitting diodes (LED) as the light source was adapted to the evaluation of PWS and response to photodynamic therapy (PDT). PA images as well as US images of the targeted skin area before and at different time points after the treatment were acquired. The imaging results from adults and children were also compared. The imaging findings demonstrate that the PWS levels of adult patients are significantly higher than children (p<0.01), which fits well with the knowledge that the vessel malefaction degree develops with patients’ age. The 2-month follow-up study on four children shows that the average PWS level reduced for 33.60%onstrat (p<0.01) as a result of 3-4 times of PDT treatment. This initial clinical trial on patients suggests PA imaging holds potential for quantitative assessment of PWS in clinical settings.\",\"PeriodicalId\":206495,\"journal\":{\"name\":\"Photons Plus Ultrasound: Imaging and Sensing 2019\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photons Plus Ultrasound: Imaging and Sensing 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2507874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photons Plus Ultrasound: Imaging and Sensing 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2507874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel light emitting diodes based photoacoustic evaluation method for port wine stain and its clinical trial (Conference Presentation)
Port-wine stain (PWS) is a discoloration of human skin caused by a vascular anomaly (i.e., capillary malformation in the skin). In the past years, several techniques have been developed for characterization and treatment evaluation of PWS. However, each of them has some limitations. Optical methods working in the ballistic regime, such as dermoscopy and VISIA, do not have sufficient penetration to cover the entire scale of PWS. High frequency ultrasound, although with better imaging depth, does not offer sufficient contrast to differentiate PWS and normal skin tissue. Therefore, current endpoint clinical assessment for PWS still relies on physicians’ subjective judgement. In this study, photoacoustic (PA) imaging utilizing light emitting diodes (LED) as the light source was adapted to the evaluation of PWS and response to photodynamic therapy (PDT). PA images as well as US images of the targeted skin area before and at different time points after the treatment were acquired. The imaging results from adults and children were also compared. The imaging findings demonstrate that the PWS levels of adult patients are significantly higher than children (p<0.01), which fits well with the knowledge that the vessel malefaction degree develops with patients’ age. The 2-month follow-up study on four children shows that the average PWS level reduced for 33.60%onstrat (p<0.01) as a result of 3-4 times of PDT treatment. This initial clinical trial on patients suggests PA imaging holds potential for quantitative assessment of PWS in clinical settings.