非正常条件下回归与神经网络模型的股票指数预测

K. Sujatha, S. Sundaram
{"title":"非正常条件下回归与神经网络模型的股票指数预测","authors":"K. Sujatha, S. Sundaram","doi":"10.1109/INTERACT.2010.5706195","DOIUrl":null,"url":null,"abstract":"Nonparametric Linear Regression and Artificial Neural Network models have been developed based on different perspectives and assumptions. In this paper a survey is made to compare the predictive performances of the nonparametric models of closing prices of Stock Index data, where the data is non normal. Comparative studies with the existing statistical prediction models indicate that the proposed neural network model is very promising and can be implemented into real time trading system for stock price prediction.","PeriodicalId":201931,"journal":{"name":"INTERACT-2010","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Stock index prediction using regression and neural network models under non normal conditions\",\"authors\":\"K. Sujatha, S. Sundaram\",\"doi\":\"10.1109/INTERACT.2010.5706195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonparametric Linear Regression and Artificial Neural Network models have been developed based on different perspectives and assumptions. In this paper a survey is made to compare the predictive performances of the nonparametric models of closing prices of Stock Index data, where the data is non normal. Comparative studies with the existing statistical prediction models indicate that the proposed neural network model is very promising and can be implemented into real time trading system for stock price prediction.\",\"PeriodicalId\":201931,\"journal\":{\"name\":\"INTERACT-2010\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERACT-2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERACT.2010.5706195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERACT-2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERACT.2010.5706195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

基于不同的观点和假设,非参数线性回归和人工神经网络模型得到了发展。本文比较了非参数模型对非正态数据下股票指数收盘价格的预测性能。通过与现有统计预测模型的对比研究表明,本文提出的神经网络模型具有较好的应用前景,可以应用于实时交易系统中进行股价预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock index prediction using regression and neural network models under non normal conditions
Nonparametric Linear Regression and Artificial Neural Network models have been developed based on different perspectives and assumptions. In this paper a survey is made to compare the predictive performances of the nonparametric models of closing prices of Stock Index data, where the data is non normal. Comparative studies with the existing statistical prediction models indicate that the proposed neural network model is very promising and can be implemented into real time trading system for stock price prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信