蛋白质结构与基序的知识工程:一个原型系统的设计

S. Subramaniam, D. Tcheng, K. Hu, Harish Ragavan, L. Rendell
{"title":"蛋白质结构与基序的知识工程:一个原型系统的设计","authors":"S. Subramaniam, D. Tcheng, K. Hu, Harish Ragavan, L. Rendell","doi":"10.1109/SEKE.1992.227960","DOIUrl":null,"url":null,"abstract":"A knowledge base and learning system is designed to help biologists predict protein structure and function based on sequence information. The knowledge base contains diverse information about: (a) protein motif sequences and structures, (b) heuristics and programs for identifying protein features, and (c) molecular simulation programs. The learning system selects the most relevant information for a particular prediction task and optimally integrates the information to generate accurate and comprehensible hypotheses. Biologists define the objectives for learning such as accuracy and comprehensibility. To overcome the limitations of existing induction algorithms, techniques are developed for constructing new features based on the existing knowledge base. Optimization algorithms are used for determining the best combination of induction and feature construction strategies for a problem.<<ETX>>","PeriodicalId":191866,"journal":{"name":"Proceedings Fourth International Conference on Software Engineering and Knowledge Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Knowledge engineering for protein structure and motifs: design of a prototype system\",\"authors\":\"S. Subramaniam, D. Tcheng, K. Hu, Harish Ragavan, L. Rendell\",\"doi\":\"10.1109/SEKE.1992.227960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A knowledge base and learning system is designed to help biologists predict protein structure and function based on sequence information. The knowledge base contains diverse information about: (a) protein motif sequences and structures, (b) heuristics and programs for identifying protein features, and (c) molecular simulation programs. The learning system selects the most relevant information for a particular prediction task and optimally integrates the information to generate accurate and comprehensible hypotheses. Biologists define the objectives for learning such as accuracy and comprehensibility. To overcome the limitations of existing induction algorithms, techniques are developed for constructing new features based on the existing knowledge base. Optimization algorithms are used for determining the best combination of induction and feature construction strategies for a problem.<<ETX>>\",\"PeriodicalId\":191866,\"journal\":{\"name\":\"Proceedings Fourth International Conference on Software Engineering and Knowledge Engineering\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth International Conference on Software Engineering and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEKE.1992.227960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Conference on Software Engineering and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEKE.1992.227960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一个知识库和学习系统的设计,以帮助生物学家预测基于序列信息的蛋白质结构和功能。该知识库包含多种信息:(a)蛋白质基序序列和结构,(b)用于识别蛋白质特征的启发式和程序,以及(c)分子模拟程序。学习系统为特定的预测任务选择最相关的信息,并优化整合这些信息以生成准确且可理解的假设。生物学家定义了学习的目标,如准确性和可理解性。为了克服现有归纳算法的局限性,开发了基于现有知识库构建新特征的技术。优化算法用于确定问题的归纳和特征构建策略的最佳组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge engineering for protein structure and motifs: design of a prototype system
A knowledge base and learning system is designed to help biologists predict protein structure and function based on sequence information. The knowledge base contains diverse information about: (a) protein motif sequences and structures, (b) heuristics and programs for identifying protein features, and (c) molecular simulation programs. The learning system selects the most relevant information for a particular prediction task and optimally integrates the information to generate accurate and comprehensible hypotheses. Biologists define the objectives for learning such as accuracy and comprehensibility. To overcome the limitations of existing induction algorithms, techniques are developed for constructing new features based on the existing knowledge base. Optimization algorithms are used for determining the best combination of induction and feature construction strategies for a problem.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信