智能摄像机网络中的动态协议栈

M. Happe, Yujiao Huang, A. Keller
{"title":"智能摄像机网络中的动态协议栈","authors":"M. Happe, Yujiao Huang, A. Keller","doi":"10.1109/ReConFig.2014.7032511","DOIUrl":null,"url":null,"abstract":"The term Internet of Things is often used to talk about the trend of embedding microprocessors in everyday devices and connecting them to the Internet. The Internet of Things poses challenging communication requirements since the participating devices are heterogeneous, resource-constrained and operate in an ever changing environment. To cope with those requirements, academic research projects have proposed novel network architectures, such as the Dynamic Protocol Stack (DPS) architecture. In this paper, we use smart camera networks as an example of the Internet of Things and evaluate the DPS architecture in this scenario. Our smart camera nodes are implemented as an FPGA-based system-on-chip architecture that uses the DPS architecture for the network communication. We evaluate our smart camera nodes in two case studies. In the first case study, we demonstrate that our proposed smart camera network can track a single object over the field of view of several camera nodes. In the second case study, we show that an adaptive hardware/software mapping of the network functionality can save about 22% of the FPGA resources as compared to a static mapping. The hardware/software mapping can be adapted at a processing delay of a single video frame.","PeriodicalId":137331,"journal":{"name":"2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dynamic protocol stacks in smart camera networks\",\"authors\":\"M. Happe, Yujiao Huang, A. Keller\",\"doi\":\"10.1109/ReConFig.2014.7032511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The term Internet of Things is often used to talk about the trend of embedding microprocessors in everyday devices and connecting them to the Internet. The Internet of Things poses challenging communication requirements since the participating devices are heterogeneous, resource-constrained and operate in an ever changing environment. To cope with those requirements, academic research projects have proposed novel network architectures, such as the Dynamic Protocol Stack (DPS) architecture. In this paper, we use smart camera networks as an example of the Internet of Things and evaluate the DPS architecture in this scenario. Our smart camera nodes are implemented as an FPGA-based system-on-chip architecture that uses the DPS architecture for the network communication. We evaluate our smart camera nodes in two case studies. In the first case study, we demonstrate that our proposed smart camera network can track a single object over the field of view of several camera nodes. In the second case study, we show that an adaptive hardware/software mapping of the network functionality can save about 22% of the FPGA resources as compared to a static mapping. The hardware/software mapping can be adapted at a processing delay of a single video frame.\",\"PeriodicalId\":137331,\"journal\":{\"name\":\"2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14)\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2014.7032511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2014.7032511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

物联网(Internet of Things)一词通常用来描述在日常设备中嵌入微处理器并将其连接到互联网的趋势。由于参与物联网的设备是异构的,资源受限的,并且在不断变化的环境中运行,因此物联网提出了具有挑战性的通信要求。为了应对这些需求,学术研究项目提出了新的网络体系结构,如动态协议栈(DPS)体系结构。本文以智能摄像机网络为例,对该场景下的DPS架构进行了评估。我们的智能摄像机节点采用基于fpga的片上系统架构,使用DPS架构进行网络通信。我们在两个案例研究中评估了我们的智能相机节点。在第一个案例研究中,我们证明了我们提出的智能摄像头网络可以在多个摄像头节点的视场上跟踪单个物体。在第二个案例研究中,我们表明,与静态映射相比,网络功能的自适应硬件/软件映射可以节省约22%的FPGA资源。硬件/软件映射可以适应于单个视频帧的处理延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic protocol stacks in smart camera networks
The term Internet of Things is often used to talk about the trend of embedding microprocessors in everyday devices and connecting them to the Internet. The Internet of Things poses challenging communication requirements since the participating devices are heterogeneous, resource-constrained and operate in an ever changing environment. To cope with those requirements, academic research projects have proposed novel network architectures, such as the Dynamic Protocol Stack (DPS) architecture. In this paper, we use smart camera networks as an example of the Internet of Things and evaluate the DPS architecture in this scenario. Our smart camera nodes are implemented as an FPGA-based system-on-chip architecture that uses the DPS architecture for the network communication. We evaluate our smart camera nodes in two case studies. In the first case study, we demonstrate that our proposed smart camera network can track a single object over the field of view of several camera nodes. In the second case study, we show that an adaptive hardware/software mapping of the network functionality can save about 22% of the FPGA resources as compared to a static mapping. The hardware/software mapping can be adapted at a processing delay of a single video frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信