改进的自适应凸组合最小均方(LMS)算法

Wei Wang, Chuankun Mu, Hongru Song, Miao Yu
{"title":"改进的自适应凸组合最小均方(LMS)算法","authors":"Wei Wang, Chuankun Mu, Hongru Song, Miao Yu","doi":"10.1109/ICCIS.2010.145","DOIUrl":null,"url":null,"abstract":"In the normal adaptive convex combination of least mean square algorithm (CLMS), the rule for modifying mixing parameter is based on the steepest descent method. When the algorithm converges, it will generate zigzag phenomena, which can make the convergence speed become slowly. To solve this problem, a new method that combines steepest descent method with damp Newton method for the mixing parameter is presented in this paper. The improved method can get faster convergence speed as well as retain the properties of normal convex combination algorithm. The results of comparison and simulation verify that the improved method has faster convergence speed and better performance.","PeriodicalId":227848,"journal":{"name":"2010 International Conference on Computational and Information Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Adaptive Convex Combination of Least Mean Square (LMS) Algorithm\",\"authors\":\"Wei Wang, Chuankun Mu, Hongru Song, Miao Yu\",\"doi\":\"10.1109/ICCIS.2010.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the normal adaptive convex combination of least mean square algorithm (CLMS), the rule for modifying mixing parameter is based on the steepest descent method. When the algorithm converges, it will generate zigzag phenomena, which can make the convergence speed become slowly. To solve this problem, a new method that combines steepest descent method with damp Newton method for the mixing parameter is presented in this paper. The improved method can get faster convergence speed as well as retain the properties of normal convex combination algorithm. The results of comparison and simulation verify that the improved method has faster convergence speed and better performance.\",\"PeriodicalId\":227848,\"journal\":{\"name\":\"2010 International Conference on Computational and Information Sciences\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在常规自适应凸组合最小均方算法(CLMS)中,混合参数的修改规则基于最陡下降法。当算法收敛时,会产生锯齿状的现象,使得收敛速度变慢。为了解决这一问题,本文提出了一种混合参数的最陡下降法与阻尼牛顿法相结合的新方法。改进后的算法在保持常规凸组合算法特性的同时,收敛速度更快。对比和仿真结果表明,改进后的方法具有更快的收敛速度和更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Adaptive Convex Combination of Least Mean Square (LMS) Algorithm
In the normal adaptive convex combination of least mean square algorithm (CLMS), the rule for modifying mixing parameter is based on the steepest descent method. When the algorithm converges, it will generate zigzag phenomena, which can make the convergence speed become slowly. To solve this problem, a new method that combines steepest descent method with damp Newton method for the mixing parameter is presented in this paper. The improved method can get faster convergence speed as well as retain the properties of normal convex combination algorithm. The results of comparison and simulation verify that the improved method has faster convergence speed and better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信