基于先进迁移率模型的4H-SiC MOSFET Spice建模

Yuming Zhou, Y. Li, B. Wang
{"title":"基于先进迁移率模型的4H-SiC MOSFET Spice建模","authors":"Yuming Zhou, Y. Li, B. Wang","doi":"10.1109/WIPDA.2016.7887813","DOIUrl":null,"url":null,"abstract":"SPICE modeling of silicon carbide (SiC) MOSFET based on the advanced mobility model has been carried out. This modeling employs the SPICE level-1 model of MOSFET, but the constant mobility in the piecewise current equations has been replaced by the advanced mobility expressions, which can exactly reflect the effect of SiC/SiO2 interface traps on the electrical characteristics of 4H-SiC MOSFET. Key parameters in this advanced mobility model are obtained according to charge-sheet model (CSM) of MOS system. The transfer characteristics of the developed 4H-SiC MOSFET model have been validated with the production Datasheet, the switching characteristics have been experimentally verified in Boost converter. Based on the developed model, the effect of SiC/SiO2 interface-trap densities on the switching characteristics of 4H-SiC MOSFET has been quantitatively discussed, reasonable gate driving voltage of 4HSiC MOSFET with different interface-trap densities has been revealed.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spice modeling of 4H-SiC MOSFET based on the advanced mobility model\",\"authors\":\"Yuming Zhou, Y. Li, B. Wang\",\"doi\":\"10.1109/WIPDA.2016.7887813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SPICE modeling of silicon carbide (SiC) MOSFET based on the advanced mobility model has been carried out. This modeling employs the SPICE level-1 model of MOSFET, but the constant mobility in the piecewise current equations has been replaced by the advanced mobility expressions, which can exactly reflect the effect of SiC/SiO2 interface traps on the electrical characteristics of 4H-SiC MOSFET. Key parameters in this advanced mobility model are obtained according to charge-sheet model (CSM) of MOS system. The transfer characteristics of the developed 4H-SiC MOSFET model have been validated with the production Datasheet, the switching characteristics have been experimentally verified in Boost converter. Based on the developed model, the effect of SiC/SiO2 interface-trap densities on the switching characteristics of 4H-SiC MOSFET has been quantitatively discussed, reasonable gate driving voltage of 4HSiC MOSFET with different interface-trap densities has been revealed.\",\"PeriodicalId\":431347,\"journal\":{\"name\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2016.7887813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7887813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于先进的迁移率模型,对碳化硅MOSFET进行了SPICE建模。本模型采用MOSFET的SPICE 1级模型,但将零碎电流方程中的恒定迁移率替换为先进的迁移率表达式,可以准确反映SiC/SiO2界面陷阱对4H-SiC MOSFET电学特性的影响。根据MOS系统的电荷表模型(CSM)得到了先进迁移模型的关键参数。利用生产数据验证了所开发的4H-SiC MOSFET模型的传输特性,并在Boost变换器中进行了开关特性的实验验证。基于所建立的模型,定量讨论了SiC/SiO2界面阱密度对4H-SiC MOSFET开关特性的影响,揭示了不同界面阱密度下4HSiC MOSFET的合理栅极驱动电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spice modeling of 4H-SiC MOSFET based on the advanced mobility model
SPICE modeling of silicon carbide (SiC) MOSFET based on the advanced mobility model has been carried out. This modeling employs the SPICE level-1 model of MOSFET, but the constant mobility in the piecewise current equations has been replaced by the advanced mobility expressions, which can exactly reflect the effect of SiC/SiO2 interface traps on the electrical characteristics of 4H-SiC MOSFET. Key parameters in this advanced mobility model are obtained according to charge-sheet model (CSM) of MOS system. The transfer characteristics of the developed 4H-SiC MOSFET model have been validated with the production Datasheet, the switching characteristics have been experimentally verified in Boost converter. Based on the developed model, the effect of SiC/SiO2 interface-trap densities on the switching characteristics of 4H-SiC MOSFET has been quantitatively discussed, reasonable gate driving voltage of 4HSiC MOSFET with different interface-trap densities has been revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信