基于遗传算法和图像分割的改进FD高级分类

S. Venkatesan, M. Karnan
{"title":"基于遗传算法和图像分割的改进FD高级分类","authors":"S. Venkatesan, M. Karnan","doi":"10.1109/ICCRD.2010.96","DOIUrl":null,"url":null,"abstract":"In certain applications face detection may require advance classification methods that would precisely identify the faces even if the face visibility measure is less. This paper proposes face detection based on usage of Genetic algorithm for advance classification of cases and objects of the input image. This paper suggests preliminary segmentation of images into regions that contain \"Non-face\" objects and \"face\" objects. this idea may greatly accelerate the efficiency of face detection.","PeriodicalId":158568,"journal":{"name":"2010 Second International Conference on Computer Research and Development","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Advanced Classification Using Genetic Algorithm and Image Segmentation for Improved FD\",\"authors\":\"S. Venkatesan, M. Karnan\",\"doi\":\"10.1109/ICCRD.2010.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In certain applications face detection may require advance classification methods that would precisely identify the faces even if the face visibility measure is less. This paper proposes face detection based on usage of Genetic algorithm for advance classification of cases and objects of the input image. This paper suggests preliminary segmentation of images into regions that contain \\\"Non-face\\\" objects and \\\"face\\\" objects. this idea may greatly accelerate the efficiency of face detection.\",\"PeriodicalId\":158568,\"journal\":{\"name\":\"2010 Second International Conference on Computer Research and Development\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computer Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCRD.2010.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRD.2010.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在某些应用中,人脸检测可能需要先进的分类方法,即使人脸可见性较低,也能精确识别人脸。本文提出了一种基于遗传算法的人脸检测方法,对输入图像中的案例和对象进行预先分类。本文建议将图像初步分割为包含“非人脸”对象和“人脸”对象的区域。这种思想可以大大提高人脸检测的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Classification Using Genetic Algorithm and Image Segmentation for Improved FD
In certain applications face detection may require advance classification methods that would precisely identify the faces even if the face visibility measure is less. This paper proposes face detection based on usage of Genetic algorithm for advance classification of cases and objects of the input image. This paper suggests preliminary segmentation of images into regions that contain "Non-face" objects and "face" objects. this idea may greatly accelerate the efficiency of face detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信