改善有机-无机电解质界面相容性制备无枝晶长寿命全固态锂金属电池复合电解质

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang Ma, Mian Liu, Qingping Wu, Xiang Guan, Fei Wang, Hongmei Liu and Jun Xu*, 
{"title":"改善有机-无机电解质界面相容性制备无枝晶长寿命全固态锂金属电池复合电解质","authors":"Xiang Ma,&nbsp;Mian Liu,&nbsp;Qingping Wu,&nbsp;Xiang Guan,&nbsp;Fei Wang,&nbsp;Hongmei Liu and Jun Xu*,&nbsp;","doi":"10.1021/acsami.2c16174","DOIUrl":null,"url":null,"abstract":"<p >Compared with simplex ceramic or polymer solid electrolytes, composite solid electrolyte (CSE) is more promising for its better interfacial compatibility to electrode and high ionic conductivity simultaneously. Further, the interfacial compatibility within ceramic and polymer is considered to be more and more critical to the overall performance of solid-state batteries. Avoiding the agglomeration of ceramic particles at high loadings can improve the whole intrinsic characteristic and electrochemical performance of CSEs. Herein, we designed a CSE (EO@LLZTO–PEO), which consists of composite particles (EO@LLZTO) as a filler and polyethylene oxide (PEO) as polymer matrix. EO@LLZTO was prepared by chemically grafting polyethylene glycol monomethyl ether methacrylate (MPEG-MAA) on the micro-sized Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) particles. By introducing of polymer containing EO segments onto LLZTO, the interfacial compatibility between LLZTO and PEO matrix is highly enhanced, and the intrinsic Li<sup>+</sup> complexation capability of MPEG-MAA is improved, even at the high loading of garnet. EO@LLZTO–PEO shows a high ionic conductivity (1.91 mS cm<sup>–1</sup>), a broad electrochemical window (~5.2 V vs Li/Li<sup>+</sup>), and a high lithium ion transference number (0.72). The Li/EO@LLZTO–PEO/Li battery also exhibits a long cycle stability (over 1200 h of cycling). Moreover, all-solid-state batteries with LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathodes exhibit excellent cycling stability and rate performance. Consequently, enhancing the interfacial compatibility between organic and inorganic electrolytes is identified to be one of the crucial strategies for commercial solid-state lithium batteries.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"14 48","pages":"53828–53839"},"PeriodicalIF":8.3000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Composite Electrolytes Prepared by Improving the Interfacial Compatibility of Organic–Inorganic Electrolytes for Dendrite-Free, Long-Life All-Solid Lithium Metal Batteries\",\"authors\":\"Xiang Ma,&nbsp;Mian Liu,&nbsp;Qingping Wu,&nbsp;Xiang Guan,&nbsp;Fei Wang,&nbsp;Hongmei Liu and Jun Xu*,&nbsp;\",\"doi\":\"10.1021/acsami.2c16174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Compared with simplex ceramic or polymer solid electrolytes, composite solid electrolyte (CSE) is more promising for its better interfacial compatibility to electrode and high ionic conductivity simultaneously. Further, the interfacial compatibility within ceramic and polymer is considered to be more and more critical to the overall performance of solid-state batteries. Avoiding the agglomeration of ceramic particles at high loadings can improve the whole intrinsic characteristic and electrochemical performance of CSEs. Herein, we designed a CSE (EO@LLZTO–PEO), which consists of composite particles (EO@LLZTO) as a filler and polyethylene oxide (PEO) as polymer matrix. EO@LLZTO was prepared by chemically grafting polyethylene glycol monomethyl ether methacrylate (MPEG-MAA) on the micro-sized Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) particles. By introducing of polymer containing EO segments onto LLZTO, the interfacial compatibility between LLZTO and PEO matrix is highly enhanced, and the intrinsic Li<sup>+</sup> complexation capability of MPEG-MAA is improved, even at the high loading of garnet. EO@LLZTO–PEO shows a high ionic conductivity (1.91 mS cm<sup>–1</sup>), a broad electrochemical window (~5.2 V vs Li/Li<sup>+</sup>), and a high lithium ion transference number (0.72). The Li/EO@LLZTO–PEO/Li battery also exhibits a long cycle stability (over 1200 h of cycling). Moreover, all-solid-state batteries with LiFePO<sub>4</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathodes exhibit excellent cycling stability and rate performance. Consequently, enhancing the interfacial compatibility between organic and inorganic electrolytes is identified to be one of the crucial strategies for commercial solid-state lithium batteries.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"14 48\",\"pages\":\"53828–53839\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.2c16174\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c16174","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

与单晶陶瓷或聚合物固体电解质相比,复合固体电解质具有较好的电极界面相容性和较高的离子电导率,具有较好的应用前景。此外,陶瓷和聚合物之间的界面相容性被认为对固态电池的整体性能越来越重要。避免陶瓷颗粒在高负载下的团聚,可以改善CSEs的整体特性和电化学性能。在此,我们设计了一种CSE (EO@LLZTO -PEO),它由复合颗粒(EO@LLZTO)作为填料,聚乙烯氧化物(PEO)作为聚合物基体组成。在微粒径Li6.4La3Zr1.4Ta0.6O12 (LLZTO)颗粒上化学接枝聚乙二醇甲基丙烯酸单甲基醚(MPEG-MAA)制备EO@LLZTO。通过在LLZTO上引入含有EO段的聚合物,LLZTO与PEO基体之间的界面相容性得到了极大的增强,MPEG-MAA的本征Li+络合能力得到了提高,即使在高石榴石负载下也是如此。EO@LLZTO -PEO具有高离子电导率(1.91 mS cm-1)、宽电化学窗口(~5.2 V vs Li/Li+)和高锂离子转移数(0.72)。Li/EO@LLZTO -PEO /Li电池也表现出长周期稳定性(超过1200小时的循环)。此外,采用LiFePO4和LiNi0.8Co0.1Mn0.1O2 (NCM811)阴极的全固态电池表现出优异的循环稳定性和倍率性能。因此,提高有机和无机电解质之间的界面相容性被认为是商用固态锂电池的关键策略之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Composite Electrolytes Prepared by Improving the Interfacial Compatibility of Organic–Inorganic Electrolytes for Dendrite-Free, Long-Life All-Solid Lithium Metal Batteries

Composite Electrolytes Prepared by Improving the Interfacial Compatibility of Organic–Inorganic Electrolytes for Dendrite-Free, Long-Life All-Solid Lithium Metal Batteries

Compared with simplex ceramic or polymer solid electrolytes, composite solid electrolyte (CSE) is more promising for its better interfacial compatibility to electrode and high ionic conductivity simultaneously. Further, the interfacial compatibility within ceramic and polymer is considered to be more and more critical to the overall performance of solid-state batteries. Avoiding the agglomeration of ceramic particles at high loadings can improve the whole intrinsic characteristic and electrochemical performance of CSEs. Herein, we designed a CSE (EO@LLZTO–PEO), which consists of composite particles (EO@LLZTO) as a filler and polyethylene oxide (PEO) as polymer matrix. EO@LLZTO was prepared by chemically grafting polyethylene glycol monomethyl ether methacrylate (MPEG-MAA) on the micro-sized Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles. By introducing of polymer containing EO segments onto LLZTO, the interfacial compatibility between LLZTO and PEO matrix is highly enhanced, and the intrinsic Li+ complexation capability of MPEG-MAA is improved, even at the high loading of garnet. EO@LLZTO–PEO shows a high ionic conductivity (1.91 mS cm–1), a broad electrochemical window (~5.2 V vs Li/Li+), and a high lithium ion transference number (0.72). The Li/EO@LLZTO–PEO/Li battery also exhibits a long cycle stability (over 1200 h of cycling). Moreover, all-solid-state batteries with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes exhibit excellent cycling stability and rate performance. Consequently, enhancing the interfacial compatibility between organic and inorganic electrolytes is identified to be one of the crucial strategies for commercial solid-state lithium batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信