摩尔测试使用格雷代码

T. Hisakado, K. Okumura
{"title":"摩尔测试使用格雷代码","authors":"T. Hisakado, K. Okumura","doi":"10.1109/ISCAS.2005.1465209","DOIUrl":null,"url":null,"abstract":"The Moore test is a powerful tool for finding all solutions of nonlinear equations. However, this algorithm requires tremendously many interval computations and iterative bisections of regions. This paper describes that Gray code is an effective code for the Moore test. Using the property of the MSB (most significant bit) first algorithm of the Gray code arithmetic, we can perform the Moore test with the least required accuracy, i.e., the least computational cost. Further, we point out that the region bisection corresponds to the MSB first computation by the Gray code arithmetic. Using this fact, we show that the computational results before the bisection are reused for the bisected regions and that the computational cost is considerably reduced.","PeriodicalId":191200,"journal":{"name":"2005 IEEE International Symposium on Circuits and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moore test using Gray code\",\"authors\":\"T. Hisakado, K. Okumura\",\"doi\":\"10.1109/ISCAS.2005.1465209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Moore test is a powerful tool for finding all solutions of nonlinear equations. However, this algorithm requires tremendously many interval computations and iterative bisections of regions. This paper describes that Gray code is an effective code for the Moore test. Using the property of the MSB (most significant bit) first algorithm of the Gray code arithmetic, we can perform the Moore test with the least required accuracy, i.e., the least computational cost. Further, we point out that the region bisection corresponds to the MSB first computation by the Gray code arithmetic. Using this fact, we show that the computational results before the bisection are reused for the bisected regions and that the computational cost is considerably reduced.\",\"PeriodicalId\":191200,\"journal\":{\"name\":\"2005 IEEE International Symposium on Circuits and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2005.1465209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2005.1465209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摩尔检验是求非线性方程所有解的有力工具。然而,该算法需要进行大量的区间计算和区域的迭代等分。本文论述了格雷码是一种有效的摩尔检验码。利用Gray编码算法的MSB(最高有效位)优先算法的特性,我们可以以最小的精度(即最小的计算成本)执行Moore测试。进一步指出,区域分割对应于Gray码算法的MSB第一次计算。利用这一事实,我们证明了平分前的计算结果可以对平分区域进行重用,并且大大降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moore test using Gray code
The Moore test is a powerful tool for finding all solutions of nonlinear equations. However, this algorithm requires tremendously many interval computations and iterative bisections of regions. This paper describes that Gray code is an effective code for the Moore test. Using the property of the MSB (most significant bit) first algorithm of the Gray code arithmetic, we can perform the Moore test with the least required accuracy, i.e., the least computational cost. Further, we point out that the region bisection corresponds to the MSB first computation by the Gray code arithmetic. Using this fact, we show that the computational results before the bisection are reused for the bisected regions and that the computational cost is considerably reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信