为精确的缺陷覆盖建立统计路径延迟模型的方法

Pavan Kumar Javvaji, S. Tragoudas
{"title":"为精确的缺陷覆盖建立统计路径延迟模型的方法","authors":"Pavan Kumar Javvaji, S. Tragoudas","doi":"10.1109/DFT.2018.8602962","DOIUrl":null,"url":null,"abstract":"The statistical delay of a path is traditionally modeled as a Gaussian random variable assuming that the path is always sensitized by a test pattern. Its sensitization in various circuit instances varies among its test patterns and the pattern induced delay is non-Gaussian. It is modeled using probability mass functions. The defect coverage is improved by test pattern selection using machine learning. Experimental results demonstrate accuracy in defect coverage when comparing to existing methods.","PeriodicalId":297244,"journal":{"name":"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method to Model Statistical Path Delays for Accurate Defect Coverage\",\"authors\":\"Pavan Kumar Javvaji, S. Tragoudas\",\"doi\":\"10.1109/DFT.2018.8602962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The statistical delay of a path is traditionally modeled as a Gaussian random variable assuming that the path is always sensitized by a test pattern. Its sensitization in various circuit instances varies among its test patterns and the pattern induced delay is non-Gaussian. It is modeled using probability mass functions. The defect coverage is improved by test pattern selection using machine learning. Experimental results demonstrate accuracy in defect coverage when comparing to existing methods.\",\"PeriodicalId\":297244,\"journal\":{\"name\":\"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2018.8602962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2018.8602962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

路径的统计延迟传统上被建模为高斯随机变量,假设路径总是被测试模式敏化。其在各种电路实例中的敏化程度因其测试模式而异,并且模式诱导延迟是非高斯的。它是用概率质量函数建模的。使用机器学习的测试模式选择提高了缺陷覆盖率。实验结果表明,与现有方法相比,该方法的缺陷覆盖率是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method to Model Statistical Path Delays for Accurate Defect Coverage
The statistical delay of a path is traditionally modeled as a Gaussian random variable assuming that the path is always sensitized by a test pattern. Its sensitization in various circuit instances varies among its test patterns and the pattern induced delay is non-Gaussian. It is modeled using probability mass functions. The defect coverage is improved by test pattern selection using machine learning. Experimental results demonstrate accuracy in defect coverage when comparing to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信