Spencer G. Fowers, Dah-Jye Lee, Beau J. Tippetts, Kirt D. Lillywhite, Aaron W. Dennis, J. Archibald
{"title":"视觉辅助稳定与四旋翼微型无人机的研制","authors":"Spencer G. Fowers, Dah-Jye Lee, Beau J. Tippetts, Kirt D. Lillywhite, Aaron W. Dennis, J. Archibald","doi":"10.1109/CIRA.2007.382886","DOIUrl":null,"url":null,"abstract":"Micro Unmanned Air Vehicles are well suited for a wide variety of applications in agriculture, homeland security, military, search and rescue, and surveillance. In response to these opportunities, a quad-rotor micro UAV has been developed at the Robotic Vision Lab at Brigham Young University. The quad-rotor UAV uses a custom, low-power FPGA platform to perform computationally intensive vision processing tasks on board the vehicle, eliminating the need for wireless tethers and computational support on ground stations. Drift stabilization of the UAV has been implemented using Harris feature detection and template matching running in real-time in hardware on the on-board FPGA platform, allowing the quad-rotor to maintain a stable and almost drift-free hover without human intervention.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Vision Aided Stabilization and the Development of a Quad-Rotor Micro UAV\",\"authors\":\"Spencer G. Fowers, Dah-Jye Lee, Beau J. Tippetts, Kirt D. Lillywhite, Aaron W. Dennis, J. Archibald\",\"doi\":\"10.1109/CIRA.2007.382886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro Unmanned Air Vehicles are well suited for a wide variety of applications in agriculture, homeland security, military, search and rescue, and surveillance. In response to these opportunities, a quad-rotor micro UAV has been developed at the Robotic Vision Lab at Brigham Young University. The quad-rotor UAV uses a custom, low-power FPGA platform to perform computationally intensive vision processing tasks on board the vehicle, eliminating the need for wireless tethers and computational support on ground stations. Drift stabilization of the UAV has been implemented using Harris feature detection and template matching running in real-time in hardware on the on-board FPGA platform, allowing the quad-rotor to maintain a stable and almost drift-free hover without human intervention.\",\"PeriodicalId\":301626,\"journal\":{\"name\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2007.382886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vision Aided Stabilization and the Development of a Quad-Rotor Micro UAV
Micro Unmanned Air Vehicles are well suited for a wide variety of applications in agriculture, homeland security, military, search and rescue, and surveillance. In response to these opportunities, a quad-rotor micro UAV has been developed at the Robotic Vision Lab at Brigham Young University. The quad-rotor UAV uses a custom, low-power FPGA platform to perform computationally intensive vision processing tasks on board the vehicle, eliminating the need for wireless tethers and computational support on ground stations. Drift stabilization of the UAV has been implemented using Harris feature detection and template matching running in real-time in hardware on the on-board FPGA platform, allowing the quad-rotor to maintain a stable and almost drift-free hover without human intervention.