有限域算术电路的字级多固定可整流性

V. Rao, Irina Ilioaea, Haden Ondricek, P. Kalla, Florian Enescu
{"title":"有限域算术电路的字级多固定可整流性","authors":"V. Rao, Irina Ilioaea, Haden Ondricek, P. Kalla, Florian Enescu","doi":"10.1109/ISQED51717.2021.9424286","DOIUrl":null,"url":null,"abstract":"Deciding whether a faulty circuit can be rectified at a given set of nets to match its intended specification constitutes a critical problem in post-verification debugging and rectification. Contemporary approaches which utilize Boolean SAT and Craig Interpolation techniques are infeasible in proving the rectifiability of arithmetic circuits. This paper presents a novel approach using symbolic computer algebra to prove the rectifiability of a faulty finite field arithmetic circuit at a given set of m nets. Our approach uses a word-level polynomial model and an application of a Gröbner basis decision procedure. The finite fields corresponding to the datapath word-length (n) and the patch word-length (m) may not be compatible. We make new mathematical and algorithmic contributions which resolve this disparity by modeling the problem in an appropriate composite field. Experiments demonstrate the efficacy of our word-level approach to ascertain multi-fix rectifiability compared to contemporary approaches.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Word-Level Multi-Fix Rectifiability of Finite Field Arithmetic Circuits\",\"authors\":\"V. Rao, Irina Ilioaea, Haden Ondricek, P. Kalla, Florian Enescu\",\"doi\":\"10.1109/ISQED51717.2021.9424286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deciding whether a faulty circuit can be rectified at a given set of nets to match its intended specification constitutes a critical problem in post-verification debugging and rectification. Contemporary approaches which utilize Boolean SAT and Craig Interpolation techniques are infeasible in proving the rectifiability of arithmetic circuits. This paper presents a novel approach using symbolic computer algebra to prove the rectifiability of a faulty finite field arithmetic circuit at a given set of m nets. Our approach uses a word-level polynomial model and an application of a Gröbner basis decision procedure. The finite fields corresponding to the datapath word-length (n) and the patch word-length (m) may not be compatible. We make new mathematical and algorithmic contributions which resolve this disparity by modeling the problem in an appropriate composite field. Experiments demonstrate the efficacy of our word-level approach to ascertain multi-fix rectifiability compared to contemporary approaches.\",\"PeriodicalId\":123018,\"journal\":{\"name\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED51717.2021.9424286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

确定故障电路是否可以在给定的一组网上进行整流,以达到其预期规格,是验证后调试和整流的关键问题。利用布尔SAT和克雷格插值技术的当代方法在证明算术电路的可整流性方面是不可行的。本文提出了一种利用符号计算机代数证明故障有限域算术电路在给定网络集上的可整流性的新方法。我们的方法使用一个词级多项式模型和一个Gröbner基础决策过程的应用。数据路径字长(n)和补丁字长(m)对应的有限字段可能不兼容。我们做出了新的数学和算法贡献,通过在适当的复合领域对问题进行建模来解决这种差异。实验证明,与现有方法相比,我们的词级方法在确定多定形可纠偏性方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word-Level Multi-Fix Rectifiability of Finite Field Arithmetic Circuits
Deciding whether a faulty circuit can be rectified at a given set of nets to match its intended specification constitutes a critical problem in post-verification debugging and rectification. Contemporary approaches which utilize Boolean SAT and Craig Interpolation techniques are infeasible in proving the rectifiability of arithmetic circuits. This paper presents a novel approach using symbolic computer algebra to prove the rectifiability of a faulty finite field arithmetic circuit at a given set of m nets. Our approach uses a word-level polynomial model and an application of a Gröbner basis decision procedure. The finite fields corresponding to the datapath word-length (n) and the patch word-length (m) may not be compatible. We make new mathematical and algorithmic contributions which resolve this disparity by modeling the problem in an appropriate composite field. Experiments demonstrate the efficacy of our word-level approach to ascertain multi-fix rectifiability compared to contemporary approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信