{"title":"模型驱动的微服务架构生成,用于性能基准测试和弹性工程方法","authors":"Thomas F. Düllmann, A. Hoorn","doi":"10.1145/3053600.3053627","DOIUrl":null,"url":null,"abstract":"Microservice architectures are steadily gaining adoption in industrial practice. At the same time, performance and resilience are important properties that need to be ensured. Even though approaches for performance and resilience have been developed (e.g., for anomaly detection and fault tolerance), there are no benchmarking environments for their evaluation under controlled conditions. In this paper, we propose a generative platform for benchmarking performance and resilience engineering approaches in microservice architectures, comprising an underlying metamodel, a generation platform, and supporting services for workload generation, problem injection, and monitoring.","PeriodicalId":115833,"journal":{"name":"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Model-driven Generation of Microservice Architectures for Benchmarking Performance and Resilience Engineering Approaches\",\"authors\":\"Thomas F. Düllmann, A. Hoorn\",\"doi\":\"10.1145/3053600.3053627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microservice architectures are steadily gaining adoption in industrial practice. At the same time, performance and resilience are important properties that need to be ensured. Even though approaches for performance and resilience have been developed (e.g., for anomaly detection and fault tolerance), there are no benchmarking environments for their evaluation under controlled conditions. In this paper, we propose a generative platform for benchmarking performance and resilience engineering approaches in microservice architectures, comprising an underlying metamodel, a generation platform, and supporting services for workload generation, problem injection, and monitoring.\",\"PeriodicalId\":115833,\"journal\":{\"name\":\"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3053600.3053627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3053600.3053627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-driven Generation of Microservice Architectures for Benchmarking Performance and Resilience Engineering Approaches
Microservice architectures are steadily gaining adoption in industrial practice. At the same time, performance and resilience are important properties that need to be ensured. Even though approaches for performance and resilience have been developed (e.g., for anomaly detection and fault tolerance), there are no benchmarking environments for their evaluation under controlled conditions. In this paper, we propose a generative platform for benchmarking performance and resilience engineering approaches in microservice architectures, comprising an underlying metamodel, a generation platform, and supporting services for workload generation, problem injection, and monitoring.