Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang
{"title":"面向吞吐量的内核移植到fpga上","authors":"Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang","doi":"10.1145/2463209.2488747","DOIUrl":null,"url":null,"abstract":"Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Throughput-oriented kernel porting onto FPGAs\",\"authors\":\"Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang\",\"doi\":\"10.1145/2463209.2488747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.