面向吞吐量的内核移植到fpga上

Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang
{"title":"面向吞吐量的内核移植到fpga上","authors":"Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang","doi":"10.1145/2463209.2488747","DOIUrl":null,"url":null,"abstract":"Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Throughput-oriented kernel porting onto FPGAs\",\"authors\":\"Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang\",\"doi\":\"10.1145/2463209.2488747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

可重构器件由于其低功耗和并行处理的优点,常用于异构系统。一个重要的可用性要求是支持同构编程接口。然而,同构编程接口并不能消除对代码调整的需要,从而实现跨异构体系结构计算的有效映射。在这项工作中,我们提出了一个代码优化框架,该框架分析和重构了针对GPU设备优化的CUDA内核,以促进fpga上高通量定制加速器的合成。所提出的框架支持高效的性能移植,而无需用户手动代码调整或注释。为了在fpga上实现高吞吐量的执行,采用了层次化区域图,并结合代码运动和数组变量的图形着色来重构内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Throughput-oriented kernel porting onto FPGAs
Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信