K. Sankaralingam, Tony Nowatzki, G. Wright, Poly Palamuttam, Jitu Khare, Vinay Gangadhar, Preyas Shah
{"title":"莫扎特:软件成熟度设计和芯片架构的下一个范例","authors":"K. Sankaralingam, Tony Nowatzki, G. Wright, Poly Palamuttam, Jitu Khare, Vinay Gangadhar, Preyas Shah","doi":"10.1109/HCS52781.2021.9567306","DOIUrl":null,"url":null,"abstract":"Where does AI hardware/software stand today? 1. The computational diversity needed to support AI is increasing2. The software user experience expectations is increasing3. GPU software maturity* is unrivalled in completeness and hence allows near complete dominance among AI industry deployment and researchers.4. This support for model diversity is fuelling these trends and increasing GPU adoption!* NVIDIA DL stack - cuDNN, TensorRT, etc.","PeriodicalId":246531,"journal":{"name":"2021 IEEE Hot Chips 33 Symposium (HCS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mozart: Designing for Software Maturity and the Next Paradigm for Chip Architectures\",\"authors\":\"K. Sankaralingam, Tony Nowatzki, G. Wright, Poly Palamuttam, Jitu Khare, Vinay Gangadhar, Preyas Shah\",\"doi\":\"10.1109/HCS52781.2021.9567306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Where does AI hardware/software stand today? 1. The computational diversity needed to support AI is increasing2. The software user experience expectations is increasing3. GPU software maturity* is unrivalled in completeness and hence allows near complete dominance among AI industry deployment and researchers.4. This support for model diversity is fuelling these trends and increasing GPU adoption!* NVIDIA DL stack - cuDNN, TensorRT, etc.\",\"PeriodicalId\":246531,\"journal\":{\"name\":\"2021 IEEE Hot Chips 33 Symposium (HCS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Hot Chips 33 Symposium (HCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HCS52781.2021.9567306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Hot Chips 33 Symposium (HCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HCS52781.2021.9567306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mozart: Designing for Software Maturity and the Next Paradigm for Chip Architectures
Where does AI hardware/software stand today? 1. The computational diversity needed to support AI is increasing2. The software user experience expectations is increasing3. GPU software maturity* is unrivalled in completeness and hence allows near complete dominance among AI industry deployment and researchers.4. This support for model diversity is fuelling these trends and increasing GPU adoption!* NVIDIA DL stack - cuDNN, TensorRT, etc.