利用三轴加速度计探头进行表面识别的人工触觉感知

Patrick Dallaire, Daniel Émond, P. Giguère, B. Chaib-draa
{"title":"利用三轴加速度计探头进行表面识别的人工触觉感知","authors":"Patrick Dallaire, Daniel Émond, P. Giguère, B. Chaib-draa","doi":"10.1109/ROSE.2011.6058547","DOIUrl":null,"url":null,"abstract":"In recent years, autonomous robots have been increasingly deployed in unknown environments. In order to cope with the unknown, the capability to train autonomously the perception model of an environment is highly desirable. By developing proper sensing technology, this task can be significantly facilitated. In this paper, we explore the problem of artificial tactile perception, aimed at surface identification. To this end, we introduce a simple tactile probe based upon triple axis accelerometers. This tactile probe was tested on a large collection (28) of flat surfaces, using a controlled test bed. In a first set of experiments, we demonstrated the discrimination capabilities of the probe, by achieving a surface recognition rate of 96.7% with 1 second of data, using a Support Vector Machine classifier. We also demonstrate that similar results can be achieved without the need for ground truth or the actual number of surfaces using Dirichlet process mixture models, a Bayesian nonparametric approach. These two experiments indicate that tactile sensing is, thus, a potentially viable solution for autonomous surface identification.","PeriodicalId":361472,"journal":{"name":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Artificial tactile perception for surface identification using a triple axis accelerometer probe\",\"authors\":\"Patrick Dallaire, Daniel Émond, P. Giguère, B. Chaib-draa\",\"doi\":\"10.1109/ROSE.2011.6058547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, autonomous robots have been increasingly deployed in unknown environments. In order to cope with the unknown, the capability to train autonomously the perception model of an environment is highly desirable. By developing proper sensing technology, this task can be significantly facilitated. In this paper, we explore the problem of artificial tactile perception, aimed at surface identification. To this end, we introduce a simple tactile probe based upon triple axis accelerometers. This tactile probe was tested on a large collection (28) of flat surfaces, using a controlled test bed. In a first set of experiments, we demonstrated the discrimination capabilities of the probe, by achieving a surface recognition rate of 96.7% with 1 second of data, using a Support Vector Machine classifier. We also demonstrate that similar results can be achieved without the need for ground truth or the actual number of surfaces using Dirichlet process mixture models, a Bayesian nonparametric approach. These two experiments indicate that tactile sensing is, thus, a potentially viable solution for autonomous surface identification.\",\"PeriodicalId\":361472,\"journal\":{\"name\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2011.6058547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2011.6058547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,自主机器人越来越多地部署在未知环境中。为了应对未知,自主训练环境感知模型的能力是非常需要的。通过发展适当的传感技术,可以大大促进这项任务。在本文中,我们探讨了针对表面识别的人工触觉感知问题。为此,我们介绍了一种基于三轴加速度计的简单触觉探头。这种触觉探针在大量平面上进行了测试,使用了一个受控的测试平台。在第一组实验中,我们展示了探针的识别能力,通过使用支持向量机分类器,在1秒的数据中实现了96.7%的表面识别率。我们还证明,使用Dirichlet过程混合模型,一种贝叶斯非参数方法,可以在不需要基本真理或实际表面数量的情况下获得类似的结果。这两个实验表明,触觉感知是一种潜在可行的自主表面识别解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial tactile perception for surface identification using a triple axis accelerometer probe
In recent years, autonomous robots have been increasingly deployed in unknown environments. In order to cope with the unknown, the capability to train autonomously the perception model of an environment is highly desirable. By developing proper sensing technology, this task can be significantly facilitated. In this paper, we explore the problem of artificial tactile perception, aimed at surface identification. To this end, we introduce a simple tactile probe based upon triple axis accelerometers. This tactile probe was tested on a large collection (28) of flat surfaces, using a controlled test bed. In a first set of experiments, we demonstrated the discrimination capabilities of the probe, by achieving a surface recognition rate of 96.7% with 1 second of data, using a Support Vector Machine classifier. We also demonstrate that similar results can be achieved without the need for ground truth or the actual number of surfaces using Dirichlet process mixture models, a Bayesian nonparametric approach. These two experiments indicate that tactile sensing is, thus, a potentially viable solution for autonomous surface identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信