使用ProVerif进行选举验证

Vincent Cheval, V. Cortier, A. Debant
{"title":"使用ProVerif进行选举验证","authors":"Vincent Cheval, V. Cortier, A. Debant","doi":"10.1109/CSF57540.2023.00032","DOIUrl":null,"url":null,"abstract":"Electronic voting systems should guarantee (at least) vote privacy and verifiability. Formally proving these two properties is challenging. Indeed, vote privacy is typically expressed as an equivalence property, hard to analyze for automatic tools, while verifiability requires to count the number of votes, to guarantee that all honest votes are properly tallied. We provide a full characterization of E2E-verifiability in terms of two simple properties, that are shown to be both sufficient and necessary. In contrast, previous approaches proposed sufficient conditions only. These two properties can easily be expressed in a formal tool like ProVerif but remain hard to prove automatically. Therefore, we provide a generic election framework, together with a library of lemmas, for the (automatic) proof of E2E-verifiability. We successfully apply our framework to several protocols of the literature that include two complex, industrial-scale voting protocols, namely Swiss Post and CHVote, designed for the Swiss context.","PeriodicalId":179870,"journal":{"name":"2023 IEEE 36th Computer Security Foundations Symposium (CSF)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Election Verifiability with ProVerif\",\"authors\":\"Vincent Cheval, V. Cortier, A. Debant\",\"doi\":\"10.1109/CSF57540.2023.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic voting systems should guarantee (at least) vote privacy and verifiability. Formally proving these two properties is challenging. Indeed, vote privacy is typically expressed as an equivalence property, hard to analyze for automatic tools, while verifiability requires to count the number of votes, to guarantee that all honest votes are properly tallied. We provide a full characterization of E2E-verifiability in terms of two simple properties, that are shown to be both sufficient and necessary. In contrast, previous approaches proposed sufficient conditions only. These two properties can easily be expressed in a formal tool like ProVerif but remain hard to prove automatically. Therefore, we provide a generic election framework, together with a library of lemmas, for the (automatic) proof of E2E-verifiability. We successfully apply our framework to several protocols of the literature that include two complex, industrial-scale voting protocols, namely Swiss Post and CHVote, designed for the Swiss context.\",\"PeriodicalId\":179870,\"journal\":{\"name\":\"2023 IEEE 36th Computer Security Foundations Symposium (CSF)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 36th Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF57540.2023.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF57540.2023.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子投票系统应该保证(至少)投票的隐私性和可验证性。正式证明这两个性质是有挑战性的。实际上,投票隐私通常表示为等价属性,难以对自动工具进行分析,而可验证性需要计算选票数量,以保证所有诚实的选票都被正确计数。我们在两个简单的性质方面提供了e2e可验证性的完整表征,这两个性质被证明是充分和必要的。相比之下,以前的方法只提出了充分条件。这两个属性可以很容易地用ProVerif这样的正式工具表示,但仍然很难自动证明。因此,我们提供了一个通用的选举框架,以及一个引理库,用于e2e可验证性的(自动)证明。我们成功地将我们的框架应用于文献中的几个协议,其中包括两个复杂的工业规模投票协议,即瑞士邮政和CHVote,它们是为瑞士上下文设计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Election Verifiability with ProVerif
Electronic voting systems should guarantee (at least) vote privacy and verifiability. Formally proving these two properties is challenging. Indeed, vote privacy is typically expressed as an equivalence property, hard to analyze for automatic tools, while verifiability requires to count the number of votes, to guarantee that all honest votes are properly tallied. We provide a full characterization of E2E-verifiability in terms of two simple properties, that are shown to be both sufficient and necessary. In contrast, previous approaches proposed sufficient conditions only. These two properties can easily be expressed in a formal tool like ProVerif but remain hard to prove automatically. Therefore, we provide a generic election framework, together with a library of lemmas, for the (automatic) proof of E2E-verifiability. We successfully apply our framework to several protocols of the literature that include two complex, industrial-scale voting protocols, namely Swiss Post and CHVote, designed for the Swiss context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信