分段回归分析:设计更有效的需求侧管理方案的方法

Imran Khan
{"title":"分段回归分析:设计更有效的需求侧管理方案的方法","authors":"Imran Khan","doi":"10.1109/SUSTECH.2018.8671364","DOIUrl":null,"url":null,"abstract":"A new analytical approach, time-segmented regression analysis (TSRA) has been introduced for the first time. TSRA is capable of identifying the dominating household factors responsible for peak time electricity consumption at residences. Therefore, identification of these household factors along with their time-varying nature would enable the policymakers to design more effective demand-side management (DSM) strategies to reduce peak-time electricity demand at residences.","PeriodicalId":127111,"journal":{"name":"2018 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-segmented Regression Analysis: An Approach in Designing more Effective DSM Scheme\",\"authors\":\"Imran Khan\",\"doi\":\"10.1109/SUSTECH.2018.8671364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new analytical approach, time-segmented regression analysis (TSRA) has been introduced for the first time. TSRA is capable of identifying the dominating household factors responsible for peak time electricity consumption at residences. Therefore, identification of these household factors along with their time-varying nature would enable the policymakers to design more effective demand-side management (DSM) strategies to reduce peak-time electricity demand at residences.\",\"PeriodicalId\":127111,\"journal\":{\"name\":\"2018 IEEE Conference on Technologies for Sustainability (SusTech)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Technologies for Sustainability (SusTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUSTECH.2018.8671364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUSTECH.2018.8671364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首次提出了一种新的分析方法——分时段回归分析(TSRA)。TSRA能够确定导致住宅用电高峰的主要家庭因素。因此,识别这些家庭因素及其时变性质将使政策制定者能够设计更有效的需求侧管理(DSM)策略,以减少住宅的高峰电力需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-segmented Regression Analysis: An Approach in Designing more Effective DSM Scheme
A new analytical approach, time-segmented regression analysis (TSRA) has been introduced for the first time. TSRA is capable of identifying the dominating household factors responsible for peak time electricity consumption at residences. Therefore, identification of these household factors along with their time-varying nature would enable the policymakers to design more effective demand-side management (DSM) strategies to reduce peak-time electricity demand at residences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信