Unscented KLT:非线性特征和不确定性跟踪

L. Dorini, S. Goldenstein
{"title":"Unscented KLT:非线性特征和不确定性跟踪","authors":"L. Dorini, S. Goldenstein","doi":"10.1109/SIBGRAPI.2006.46","DOIUrl":null,"url":null,"abstract":"Accurate feature tracking is the foundation of several high level tasks, such as 3D reconstruction and motion analysis. Although there are many feature tracking algorithms, most of them do not maintain information about the error of the data being tracked. In this paper, we propose a new generic framework that uses the scaled unscented transform (SUT) to augment arbitrary feature tracking algorithms, by introducing Gaussian random variables (GRV) for the representation of features' locations uncertainties. Here, we apply the framework to the well-understood Kanade-Lucas-Tomasi (KLT) feature tracker, giving birth to what we call unscented KLT (UKLT). It tracks probabilistic confidences and better rejects errors, all on-line, and leads to more robust computer vision applications. We also validate the experiments with a bundle adjustment procedure, using real and synthetic sequences","PeriodicalId":253871,"journal":{"name":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unscented KLT: nonlinear feature and uncertainty tracking\",\"authors\":\"L. Dorini, S. Goldenstein\",\"doi\":\"10.1109/SIBGRAPI.2006.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate feature tracking is the foundation of several high level tasks, such as 3D reconstruction and motion analysis. Although there are many feature tracking algorithms, most of them do not maintain information about the error of the data being tracked. In this paper, we propose a new generic framework that uses the scaled unscented transform (SUT) to augment arbitrary feature tracking algorithms, by introducing Gaussian random variables (GRV) for the representation of features' locations uncertainties. Here, we apply the framework to the well-understood Kanade-Lucas-Tomasi (KLT) feature tracker, giving birth to what we call unscented KLT (UKLT). It tracks probabilistic confidences and better rejects errors, all on-line, and leads to more robust computer vision applications. We also validate the experiments with a bundle adjustment procedure, using real and synthetic sequences\",\"PeriodicalId\":253871,\"journal\":{\"name\":\"2006 19th Brazilian Symposium on Computer Graphics and Image Processing\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 19th Brazilian Symposium on Computer Graphics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2006.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2006.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

准确的特征跟踪是一些高级任务的基础,如三维重建和运动分析。虽然有许多特征跟踪算法,但大多数算法都不保留被跟踪数据的误差信息。在本文中,我们提出了一个新的通用框架,通过引入高斯随机变量(GRV)来表示特征位置的不确定性,使用缩放无气味变换(SUT)来增强任意特征跟踪算法。在这里,我们将该框架应用于众所周知的Kanade-Lucas-Tomasi (KLT)特征跟踪器,从而产生了我们所谓的unscented KLT (UKLT)。它跟踪概率置信度,更好地拒绝错误,所有在线,并导致更强大的计算机视觉应用。我们还用真实序列和合成序列的束平差程序验证了实验
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unscented KLT: nonlinear feature and uncertainty tracking
Accurate feature tracking is the foundation of several high level tasks, such as 3D reconstruction and motion analysis. Although there are many feature tracking algorithms, most of them do not maintain information about the error of the data being tracked. In this paper, we propose a new generic framework that uses the scaled unscented transform (SUT) to augment arbitrary feature tracking algorithms, by introducing Gaussian random variables (GRV) for the representation of features' locations uncertainties. Here, we apply the framework to the well-understood Kanade-Lucas-Tomasi (KLT) feature tracker, giving birth to what we call unscented KLT (UKLT). It tracks probabilistic confidences and better rejects errors, all on-line, and leads to more robust computer vision applications. We also validate the experiments with a bundle adjustment procedure, using real and synthetic sequences
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信