基于神经模糊算法的物联网网络PHY/MAC层攻击检测系统

S. Rahman, S. Al Mamun, M. Ahmed, M. S. Kaiser
{"title":"基于神经模糊算法的物联网网络PHY/MAC层攻击检测系统","authors":"S. Rahman, S. Al Mamun, M. Ahmed, M. S. Kaiser","doi":"10.1109/ICEEOT.2016.7755150","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) has become a novel paradigm that includes globally identifiable physical objects, integrated with the internet. This work presents an attack detection model using Artificial Neuro-Fuzzy Interface System (ANFIS) for IoT networks. Based on the input-output profile, ANFIS adapts its rules and membership parameters using hybrid back propagation and learning algorithm. In this paper, Sugeno type ANFIS has been considered. The ANFIS model can take dynamic information such as traffic flow, energy level, packet size, packet rate, source-destination address, source-destination ports, etc. as input profiles, and generate the current network security state as an output profile. The performance of the ANFIS attack detection model can be compared with fuzzy logic, neural networks, and pattern recognition based attack detection models. Performance evaluation shows that the proposed model is more reliable than other approaches based on confusion matrix, mean square error and accuracy measurement.","PeriodicalId":383674,"journal":{"name":"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"PHY/MAC layer attack detection system using neuro-fuzzy algorithm for IoT network\",\"authors\":\"S. Rahman, S. Al Mamun, M. Ahmed, M. S. Kaiser\",\"doi\":\"10.1109/ICEEOT.2016.7755150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) has become a novel paradigm that includes globally identifiable physical objects, integrated with the internet. This work presents an attack detection model using Artificial Neuro-Fuzzy Interface System (ANFIS) for IoT networks. Based on the input-output profile, ANFIS adapts its rules and membership parameters using hybrid back propagation and learning algorithm. In this paper, Sugeno type ANFIS has been considered. The ANFIS model can take dynamic information such as traffic flow, energy level, packet size, packet rate, source-destination address, source-destination ports, etc. as input profiles, and generate the current network security state as an output profile. The performance of the ANFIS attack detection model can be compared with fuzzy logic, neural networks, and pattern recognition based attack detection models. Performance evaluation shows that the proposed model is more reliable than other approaches based on confusion matrix, mean square error and accuracy measurement.\",\"PeriodicalId\":383674,\"journal\":{\"name\":\"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEOT.2016.7755150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEOT.2016.7755150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

物联网(IoT)已经成为一个新的范例,包括全球可识别的物理对象,与互联网相结合。本文提出了一种基于人工神经模糊接口系统(ANFIS)的物联网网络攻击检测模型。基于输入输出轮廓,采用混合反向传播和学习算法自适应其规则和隶属度参数。本文考虑了Sugeno型ANFIS。ANFIS模型可以将流量、能级、报文大小、报文速率、源目的地址、源目的端口等动态信息作为输入配置文件,生成当前网络安全状态作为输出配置文件。ANFIS攻击检测模型的性能可以与基于模糊逻辑、神经网络和模式识别的攻击检测模型进行比较。性能评估表明,该模型比其他基于混淆矩阵、均方误差和精度测量的方法更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHY/MAC layer attack detection system using neuro-fuzzy algorithm for IoT network
The Internet of Things (IoT) has become a novel paradigm that includes globally identifiable physical objects, integrated with the internet. This work presents an attack detection model using Artificial Neuro-Fuzzy Interface System (ANFIS) for IoT networks. Based on the input-output profile, ANFIS adapts its rules and membership parameters using hybrid back propagation and learning algorithm. In this paper, Sugeno type ANFIS has been considered. The ANFIS model can take dynamic information such as traffic flow, energy level, packet size, packet rate, source-destination address, source-destination ports, etc. as input profiles, and generate the current network security state as an output profile. The performance of the ANFIS attack detection model can be compared with fuzzy logic, neural networks, and pattern recognition based attack detection models. Performance evaluation shows that the proposed model is more reliable than other approaches based on confusion matrix, mean square error and accuracy measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信