ICU转移的异步多变量时间序列早期预测

Lei Zhao, Huiying Liang, Daming Yu, Xinming Wang, Gansen Zhao
{"title":"ICU转移的异步多变量时间序列早期预测","authors":"Lei Zhao, Huiying Liang, Daming Yu, Xinming Wang, Gansen Zhao","doi":"10.1145/3348416.3348424","DOIUrl":null,"url":null,"abstract":"The forecasting of whether a patient should be transferred into intensive care units (ICU) is a matter of life and death since it will raise survival rate for patients if they get treated properly and carefully in time. However, we found that recent research on ICU early prediction could not get an acceptable result on the time series that are asynchronous and multivariate. We propose Multivariate Early Shapelet (MEShapelet) which could get an accurate prediction on asynchronous multivariate time series beside interpretability. Our experiments show that MEShapelet can get 9% improvement on F1-score over the best of the previous methods on our real ICU data set. In summary, we prove that our method can effectively carry out asynchronous multivariate time series early predict problem.","PeriodicalId":280564,"journal":{"name":"Proceedings of the 2019 International Conference on Intelligent Medicine and Health","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asynchronous Multivariate Time Series Early Prediction for ICU Transfer\",\"authors\":\"Lei Zhao, Huiying Liang, Daming Yu, Xinming Wang, Gansen Zhao\",\"doi\":\"10.1145/3348416.3348424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forecasting of whether a patient should be transferred into intensive care units (ICU) is a matter of life and death since it will raise survival rate for patients if they get treated properly and carefully in time. However, we found that recent research on ICU early prediction could not get an acceptable result on the time series that are asynchronous and multivariate. We propose Multivariate Early Shapelet (MEShapelet) which could get an accurate prediction on asynchronous multivariate time series beside interpretability. Our experiments show that MEShapelet can get 9% improvement on F1-score over the best of the previous methods on our real ICU data set. In summary, we prove that our method can effectively carry out asynchronous multivariate time series early predict problem.\",\"PeriodicalId\":280564,\"journal\":{\"name\":\"Proceedings of the 2019 International Conference on Intelligent Medicine and Health\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 International Conference on Intelligent Medicine and Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3348416.3348424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Intelligent Medicine and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3348416.3348424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

预测患者是否应该转移到重症监护病房(ICU)是生死攸关的问题,因为如果及时得到正确和仔细的治疗,将提高患者的存活率。然而,我们发现目前关于ICU早期预测的研究在异步和多元的时间序列上并不能得到令人满意的结果。本文提出了多变量早期Shapelet (MEShapelet)算法,该算法除了可解释性外,还能对异步多变量时间序列进行准确的预测。我们的实验表明,在我们的真实ICU数据集上,MEShapelet的f1评分比之前最好的方法提高了9%。总之,我们证明了该方法可以有效地解决异步多变量时间序列的早期预测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous Multivariate Time Series Early Prediction for ICU Transfer
The forecasting of whether a patient should be transferred into intensive care units (ICU) is a matter of life and death since it will raise survival rate for patients if they get treated properly and carefully in time. However, we found that recent research on ICU early prediction could not get an acceptable result on the time series that are asynchronous and multivariate. We propose Multivariate Early Shapelet (MEShapelet) which could get an accurate prediction on asynchronous multivariate time series beside interpretability. Our experiments show that MEShapelet can get 9% improvement on F1-score over the best of the previous methods on our real ICU data set. In summary, we prove that our method can effectively carry out asynchronous multivariate time series early predict problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信