{"title":"大功率对撞机中突然加热液体目标的热弹性响应","authors":"A. Hassanein, I. Konkashbaev, J. Norem","doi":"10.1109/PAC.2001.987987","DOIUrl":null,"url":null,"abstract":"Thermoelastic response of liquid metal targets exposed to high-volumetric-energy deposition in times shorter than the target hydrodynamic response time (i.e., sound travel time) is of interest to several research areas, including targets for high-power accelerators such as the Spallation Neutron Source, muon collider targets, etc. Sudden energy deposition causes shock and rarefaction waves of magnitude /spl plusmn//spl Delta/P that corresponds to an initial thermal pressure of tens of katm. Nevertheless a liquid subjected to a negative pressure is metastable. The problem of liquid target oscillations in the presence of large negative pressure, and the mechanism of fragmentation and its consequences, are considered in this paper.","PeriodicalId":313758,"journal":{"name":"PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Thermoelastic response of suddenly heated liquid targets in high-power colliders\",\"authors\":\"A. Hassanein, I. Konkashbaev, J. Norem\",\"doi\":\"10.1109/PAC.2001.987987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoelastic response of liquid metal targets exposed to high-volumetric-energy deposition in times shorter than the target hydrodynamic response time (i.e., sound travel time) is of interest to several research areas, including targets for high-power accelerators such as the Spallation Neutron Source, muon collider targets, etc. Sudden energy deposition causes shock and rarefaction waves of magnitude /spl plusmn//spl Delta/P that corresponds to an initial thermal pressure of tens of katm. Nevertheless a liquid subjected to a negative pressure is metastable. The problem of liquid target oscillations in the presence of large negative pressure, and the mechanism of fragmentation and its consequences, are considered in this paper.\",\"PeriodicalId\":313758,\"journal\":{\"name\":\"PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.2001.987987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.2001.987987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermoelastic response of suddenly heated liquid targets in high-power colliders
Thermoelastic response of liquid metal targets exposed to high-volumetric-energy deposition in times shorter than the target hydrodynamic response time (i.e., sound travel time) is of interest to several research areas, including targets for high-power accelerators such as the Spallation Neutron Source, muon collider targets, etc. Sudden energy deposition causes shock and rarefaction waves of magnitude /spl plusmn//spl Delta/P that corresponds to an initial thermal pressure of tens of katm. Nevertheless a liquid subjected to a negative pressure is metastable. The problem of liquid target oscillations in the presence of large negative pressure, and the mechanism of fragmentation and its consequences, are considered in this paper.