光谱传感中标度最大特征值的性能分析与评价:一种简单形式方法

Hussein Kobeissi, A. Nafkha, Y. Nasser, O. Bazzi, Y. Louët
{"title":"光谱传感中标度最大特征值的性能分析与评价:一种简单形式方法","authors":"Hussein Kobeissi, A. Nafkha, Y. Nasser, O. Bazzi, Y. Louët","doi":"10.4108/eai.23-2-2017.152193","DOIUrl":null,"url":null,"abstract":"Scaled Largest Eigenvalue (SLE) detector stands out as the optimal single-primary-user detector in uncertain noisy environments. In this paper, we consider a multi-antenna cognitive radio system in which we aim at detecting the presence/absence of a Primary User (PU) using the SLE detector. By the exploitation of the distributions of the largest eigenvalue and the trace of the receiver sample covariance matrix, we show that the SLE could be modeled using the standard Gaussian function. Moreover, we derive the distribution of the SLE and deduce a simple yet accurate form of the probability of false alarm and the probability of detection. Hence, this derivation yields a very simple form of the detection threshold. Correlation coefficient between the largest eigenvalue and the trace is also considered as we derive a simple analytical expression. These analytical derivations are validated through extensive Monte Carlo simulations Received on 01 June 2016; accepted on 20 February 2017; published on 23 February 2017","PeriodicalId":334012,"journal":{"name":"EAI Endorsed Trans. Cogn. Commun.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Performance Analysis and Evaluation of Scaled Largest Eigenvalue in Spectrum Sensing: A Simple Form Approach\",\"authors\":\"Hussein Kobeissi, A. Nafkha, Y. Nasser, O. Bazzi, Y. Louët\",\"doi\":\"10.4108/eai.23-2-2017.152193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scaled Largest Eigenvalue (SLE) detector stands out as the optimal single-primary-user detector in uncertain noisy environments. In this paper, we consider a multi-antenna cognitive radio system in which we aim at detecting the presence/absence of a Primary User (PU) using the SLE detector. By the exploitation of the distributions of the largest eigenvalue and the trace of the receiver sample covariance matrix, we show that the SLE could be modeled using the standard Gaussian function. Moreover, we derive the distribution of the SLE and deduce a simple yet accurate form of the probability of false alarm and the probability of detection. Hence, this derivation yields a very simple form of the detection threshold. Correlation coefficient between the largest eigenvalue and the trace is also considered as we derive a simple analytical expression. These analytical derivations are validated through extensive Monte Carlo simulations Received on 01 June 2016; accepted on 20 February 2017; published on 23 February 2017\",\"PeriodicalId\":334012,\"journal\":{\"name\":\"EAI Endorsed Trans. Cogn. Commun.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Cogn. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.23-2-2017.152193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Cogn. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.23-2-2017.152193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

缩放最大特征值(SLE)检测器在不确定的噪声环境中脱颖而出,成为最佳的单主用户检测器。在本文中,我们考虑了一个多天线认知无线电系统,我们的目标是使用SLE探测器检测主用户(PU)的存在/不存在。通过利用最大特征值的分布和接收样本协方差矩阵的迹线,我们表明SLE可以使用标准高斯函数建模。此外,我们推导出了SLE的分布,并推导出了虚警概率和检测概率的简单而准确的形式。因此,这种推导产生了一种非常简单的检测阈值形式。在推导出一个简单的解析表达式时,还考虑了最大特征值与迹线之间的相关系数。这些解析推导通过广泛的蒙特卡罗模拟得到验证。2017年2月20日接受;于2017年2月23日发布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Performance Analysis and Evaluation of Scaled Largest Eigenvalue in Spectrum Sensing: A Simple Form Approach
Scaled Largest Eigenvalue (SLE) detector stands out as the optimal single-primary-user detector in uncertain noisy environments. In this paper, we consider a multi-antenna cognitive radio system in which we aim at detecting the presence/absence of a Primary User (PU) using the SLE detector. By the exploitation of the distributions of the largest eigenvalue and the trace of the receiver sample covariance matrix, we show that the SLE could be modeled using the standard Gaussian function. Moreover, we derive the distribution of the SLE and deduce a simple yet accurate form of the probability of false alarm and the probability of detection. Hence, this derivation yields a very simple form of the detection threshold. Correlation coefficient between the largest eigenvalue and the trace is also considered as we derive a simple analytical expression. These analytical derivations are validated through extensive Monte Carlo simulations Received on 01 June 2016; accepted on 20 February 2017; published on 23 February 2017
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信