信号时序逻辑的参数不变性监测

Nima Roohi, R. Kaur, James Weimer, O. Sokolsky, Insup Lee
{"title":"信号时序逻辑的参数不变性监测","authors":"Nima Roohi, R. Kaur, James Weimer, O. Sokolsky, Insup Lee","doi":"10.1145/3178126.3178140","DOIUrl":null,"url":null,"abstract":"Signal Temporal Logic (STL) is a prominent specification formalism for real-time systems, and monitoring these specifications, specially when (for different reasons such as learning) behavior of systems can change over time, is quite important. There are three main challenges in this area: (1) full observation of system state is not possible due to noise or nuisance parameters, (2) the whole execution is not available during the monitoring, and (3) computational complexity of monitoring continuous time signals is very high. Although, each of these challenges has been addressed by different works, to the best of our knowledge, no one has addressed them all together. In this paper, we show how to extend any parameter invariant test procedure for single points in time to a parameter invariant test procedure for efficiently monitoring continuous time executions of a system against STL properties. We also show, how to extend probabilistic error guarantee of the input test procedure to a probabilistic error guarantee for the constructed test procedure.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parameter Invariant Monitoring for Signal Temporal Logic\",\"authors\":\"Nima Roohi, R. Kaur, James Weimer, O. Sokolsky, Insup Lee\",\"doi\":\"10.1145/3178126.3178140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signal Temporal Logic (STL) is a prominent specification formalism for real-time systems, and monitoring these specifications, specially when (for different reasons such as learning) behavior of systems can change over time, is quite important. There are three main challenges in this area: (1) full observation of system state is not possible due to noise or nuisance parameters, (2) the whole execution is not available during the monitoring, and (3) computational complexity of monitoring continuous time signals is very high. Although, each of these challenges has been addressed by different works, to the best of our knowledge, no one has addressed them all together. In this paper, we show how to extend any parameter invariant test procedure for single points in time to a parameter invariant test procedure for efficiently monitoring continuous time executions of a system against STL properties. We also show, how to extend probabilistic error guarantee of the input test procedure to a probabilistic error guarantee for the constructed test procedure.\",\"PeriodicalId\":131076,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178126.3178140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178126.3178140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

信号时序逻辑(Signal Temporal Logic, STL)是实时系统的重要规范形式,监视这些规范非常重要,特别是当(由于不同的原因,例如学习)系统的行为可能随时间变化时。该领域面临三大挑战:(1)由于噪声或干扰参数的影响,无法对系统状态进行完整的观察;(2)监测过程中无法获得整个执行过程;(3)监测连续时间信号的计算复杂度很高。尽管这些挑战已经被不同的作品所解决,但据我们所知,还没有人能同时解决它们。在本文中,我们展示了如何将单时间点的任何参数不变测试过程扩展为参数不变测试过程,以便根据STL属性有效地监视系统的连续时间执行。我们还展示了如何将输入测试过程的概率错误保证扩展为构造测试过程的概率错误保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Invariant Monitoring for Signal Temporal Logic
Signal Temporal Logic (STL) is a prominent specification formalism for real-time systems, and monitoring these specifications, specially when (for different reasons such as learning) behavior of systems can change over time, is quite important. There are three main challenges in this area: (1) full observation of system state is not possible due to noise or nuisance parameters, (2) the whole execution is not available during the monitoring, and (3) computational complexity of monitoring continuous time signals is very high. Although, each of these challenges has been addressed by different works, to the best of our knowledge, no one has addressed them all together. In this paper, we show how to extend any parameter invariant test procedure for single points in time to a parameter invariant test procedure for efficiently monitoring continuous time executions of a system against STL properties. We also show, how to extend probabilistic error guarantee of the input test procedure to a probabilistic error guarantee for the constructed test procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信