{"title":"可选择的尖端和激光为基础的纳米加工高达100毫米的平面和非平面与亚纳米精度","authors":"E. Manske","doi":"10.1109/IWAPS51164.2020.9286793","DOIUrl":null,"url":null,"abstract":"More and more new AFM tip-based or laser structuring methods have been attracting attention as alternative lithography approaches for some years now. But most of them have only been demonstrated in the micrometer range so far, and measurement and positioning technology is usually inadequate. Instruments that can measure and structure on flat and even non-flat surfaces in growing fields of application at the atomic level are the focus of the latest developments in consistent continuation of the nanopositioning and nanomeasuring machines created at the Technical University of Ilmenau. The new developed Nano Fabrication Machine 100 (NFM-100) serves as an important experimental platform for basic research in the field of scale-spanning AFM tip-based and laser-based nanofabrication for subnanometer structuring on 4 inch surfaces. The laser interferometer based high precision machine has 20 picometer resolution and subnanometer reproducibility. It can be equipped with AFM heads as well as with laser systems that can both write and read, i.e. measure with nanometer reproducibility and accuracy. This paper describes the extraordinary capabilities of the NFM-100 and selected nanofabrication technologies, e.g. advanced scanning proximal probe lithography based on Fowler-Nordheim electron field emission, direct laser writing, and UV nanoimprint lithography.","PeriodicalId":165983,"journal":{"name":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative tip- and laser- based nanofabrication up to 100 mm on flat and non-flat surfaces with subnanometre precision\",\"authors\":\"E. Manske\",\"doi\":\"10.1109/IWAPS51164.2020.9286793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More and more new AFM tip-based or laser structuring methods have been attracting attention as alternative lithography approaches for some years now. But most of them have only been demonstrated in the micrometer range so far, and measurement and positioning technology is usually inadequate. Instruments that can measure and structure on flat and even non-flat surfaces in growing fields of application at the atomic level are the focus of the latest developments in consistent continuation of the nanopositioning and nanomeasuring machines created at the Technical University of Ilmenau. The new developed Nano Fabrication Machine 100 (NFM-100) serves as an important experimental platform for basic research in the field of scale-spanning AFM tip-based and laser-based nanofabrication for subnanometer structuring on 4 inch surfaces. The laser interferometer based high precision machine has 20 picometer resolution and subnanometer reproducibility. It can be equipped with AFM heads as well as with laser systems that can both write and read, i.e. measure with nanometer reproducibility and accuracy. This paper describes the extraordinary capabilities of the NFM-100 and selected nanofabrication technologies, e.g. advanced scanning proximal probe lithography based on Fowler-Nordheim electron field emission, direct laser writing, and UV nanoimprint lithography.\",\"PeriodicalId\":165983,\"journal\":{\"name\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAPS51164.2020.9286793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAPS51164.2020.9286793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alternative tip- and laser- based nanofabrication up to 100 mm on flat and non-flat surfaces with subnanometre precision
More and more new AFM tip-based or laser structuring methods have been attracting attention as alternative lithography approaches for some years now. But most of them have only been demonstrated in the micrometer range so far, and measurement and positioning technology is usually inadequate. Instruments that can measure and structure on flat and even non-flat surfaces in growing fields of application at the atomic level are the focus of the latest developments in consistent continuation of the nanopositioning and nanomeasuring machines created at the Technical University of Ilmenau. The new developed Nano Fabrication Machine 100 (NFM-100) serves as an important experimental platform for basic research in the field of scale-spanning AFM tip-based and laser-based nanofabrication for subnanometer structuring on 4 inch surfaces. The laser interferometer based high precision machine has 20 picometer resolution and subnanometer reproducibility. It can be equipped with AFM heads as well as with laser systems that can both write and read, i.e. measure with nanometer reproducibility and accuracy. This paper describes the extraordinary capabilities of the NFM-100 and selected nanofabrication technologies, e.g. advanced scanning proximal probe lithography based on Fowler-Nordheim electron field emission, direct laser writing, and UV nanoimprint lithography.