前列腺癌组织型成像(TTI)的新进展:超声与磁共振联合成像方法

E. Feleppa, S. Dasgupta, A. Kalisz, J. Ketterling, S. Ramachandran, C. Porter, M. Lacrampe, D. Dail, D. Sparks, F. Arias-Mendosa
{"title":"前列腺癌组织型成像(TTI)的新进展:超声与磁共振联合成像方法","authors":"E. Feleppa, S. Dasgupta, A. Kalisz, J. Ketterling, S. Ramachandran, C. Porter, M. Lacrampe, D. Dail, D. Sparks, F. Arias-Mendosa","doi":"10.1109/ULTSYM.2005.1602978","DOIUrl":null,"url":null,"abstract":"Because current methods of imaging prostate cancer are inadequate, biopsies cannot be guided effectively and treatment cannot be planned, targeted or monitored optimally. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating, and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (RF) ultrasonic (US) echo signals combined with clinical variables such as prostate-specific antigen (PSA). We classify parameters of US spectra (USS) using artificial neural networks (ANNs), and express classification efficacy using relative-operating- characteristic (ROC) methods. The US methods produce ROC- curve areas of 0.84 compared to 0.64 for conventional methods. We generate lookup tables (LUTs) that translate spectral parameters and clinical variables directly to pixel values in tissue-type images (TTIs) that show cancerous regions in 2- or 3- D. Based on encouraging results obtained by others using magnetic-resonance spectroscopy (MRS) for identifying cancerous prostate lesions, we are investigating means of combining MRS with USS methods to produce multimodality TTIs.","PeriodicalId":302030,"journal":{"name":"IEEE Ultrasonics Symposium, 2005.","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New developments in tissue-type imaging (TTI) of prostate cancer: combined ultrasonic and magnetic-resonance methods\",\"authors\":\"E. Feleppa, S. Dasgupta, A. Kalisz, J. Ketterling, S. Ramachandran, C. Porter, M. Lacrampe, D. Dail, D. Sparks, F. Arias-Mendosa\",\"doi\":\"10.1109/ULTSYM.2005.1602978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because current methods of imaging prostate cancer are inadequate, biopsies cannot be guided effectively and treatment cannot be planned, targeted or monitored optimally. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating, and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (RF) ultrasonic (US) echo signals combined with clinical variables such as prostate-specific antigen (PSA). We classify parameters of US spectra (USS) using artificial neural networks (ANNs), and express classification efficacy using relative-operating- characteristic (ROC) methods. The US methods produce ROC- curve areas of 0.84 compared to 0.64 for conventional methods. We generate lookup tables (LUTs) that translate spectral parameters and clinical variables directly to pixel values in tissue-type images (TTIs) that show cancerous regions in 2- or 3- D. Based on encouraging results obtained by others using magnetic-resonance spectroscopy (MRS) for identifying cancerous prostate lesions, we are investigating means of combining MRS with USS methods to produce multimodality TTIs.\",\"PeriodicalId\":302030,\"journal\":{\"name\":\"IEEE Ultrasonics Symposium, 2005.\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Ultrasonics Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2005.1602978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Ultrasonics Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2005.1602978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于目前前列腺癌的成像方法不完善,活检不能有效地指导,治疗也不能进行最佳的计划、靶向或监测。因此,我们的研究旨在超声表征癌性前列腺组织,以便我们能够更有效地对其进行成像,从而为前列腺癌的检测、治疗和监测提供改进的手段。我们的表征方法基于射频(RF)超声(US)回波信号的频谱分析,并结合前列腺特异性抗原(PSA)等临床变量。我们利用人工神经网络(ann)对美国光谱(USS)参数进行分类,并利用相对操作特征(ROC)方法表达分类效果。美国方法的ROC曲线面积为0.84,而传统方法的ROC曲线面积为0.64。我们生成查找表(LUTs),将光谱参数和临床变量直接转换为显示2- d或3- d癌变区域的组织型图像(tti)中的像素值。基于其他人使用磁共振波谱(MRS)识别癌性前列腺病变获得的令人鼓舞的结果,我们正在研究将MRS与USS方法相结合以产生多模态tti的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New developments in tissue-type imaging (TTI) of prostate cancer: combined ultrasonic and magnetic-resonance methods
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be guided effectively and treatment cannot be planned, targeted or monitored optimally. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating, and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (RF) ultrasonic (US) echo signals combined with clinical variables such as prostate-specific antigen (PSA). We classify parameters of US spectra (USS) using artificial neural networks (ANNs), and express classification efficacy using relative-operating- characteristic (ROC) methods. The US methods produce ROC- curve areas of 0.84 compared to 0.64 for conventional methods. We generate lookup tables (LUTs) that translate spectral parameters and clinical variables directly to pixel values in tissue-type images (TTIs) that show cancerous regions in 2- or 3- D. Based on encouraging results obtained by others using magnetic-resonance spectroscopy (MRS) for identifying cancerous prostate lesions, we are investigating means of combining MRS with USS methods to produce multimodality TTIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信