混合内存的行缓冲区位置感知缓存策略

Hanbin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding, O. Mutlu
{"title":"混合内存的行缓冲区位置感知缓存策略","authors":"Hanbin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding, O. Mutlu","doi":"10.1109/ICCD.2012.6378661","DOIUrl":null,"url":null,"abstract":"Phase change memory (PCM) is a promising technology that can offer higher capacity than DRAM. Unfortunately, PCM's access latency and energy are higher than DRAM's and its endurance is lower. Many DRAM-PCM hybrid memory systems use DRAM as a cache to PCM, to achieve the low access latency and energy, and high endurance of DRAM, while taking advantage of PCM's large capacity. A key question is what data to cache in DRAM to best exploit the advantages of each technology while avoiding its disadvantages as much as possible. We propose a new caching policy that improves hybrid memory performance and energy efficiency. Our observation is that both DRAM and PCM banks employ row buffers that act as a cache for the most recently accessed memory row. Accesses that are row buffer hits incur similar latencies (and energy consumption) in DRAM and PCM, whereas accesses that are row buffer misses incur longer latencies (and higher energy consumption) in PCM. To exploit this, we devise a policy that avoids accessing in PCM data that frequently causes row buffer misses because such accesses are costly in terms of both latency and energy. Our policy tracks the row buffer miss counts of recently used rows in PCM, and caches in DRAM the rows that are predicted to incur frequent row buffer misses. Our proposed caching policy also takes into account the high write latencies of PCM, in addition to row buffer locality. Compared to a conventional DRAM-PCM hybrid memory system, our row buffer locality-aware caching policy improves system performance by 14% and energy efficiency by 10% on data-intensive server and cloud-type workloads. The proposed policy achieves 31% performance gain over an all-PCM memory system, and comes within 29% of the performance of an allDRAM memory system (not taking PCM's capacity benefit into account) on evaluated workloads.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":"{\"title\":\"Row buffer locality aware caching policies for hybrid memories\",\"authors\":\"Hanbin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding, O. Mutlu\",\"doi\":\"10.1109/ICCD.2012.6378661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase change memory (PCM) is a promising technology that can offer higher capacity than DRAM. Unfortunately, PCM's access latency and energy are higher than DRAM's and its endurance is lower. Many DRAM-PCM hybrid memory systems use DRAM as a cache to PCM, to achieve the low access latency and energy, and high endurance of DRAM, while taking advantage of PCM's large capacity. A key question is what data to cache in DRAM to best exploit the advantages of each technology while avoiding its disadvantages as much as possible. We propose a new caching policy that improves hybrid memory performance and energy efficiency. Our observation is that both DRAM and PCM banks employ row buffers that act as a cache for the most recently accessed memory row. Accesses that are row buffer hits incur similar latencies (and energy consumption) in DRAM and PCM, whereas accesses that are row buffer misses incur longer latencies (and higher energy consumption) in PCM. To exploit this, we devise a policy that avoids accessing in PCM data that frequently causes row buffer misses because such accesses are costly in terms of both latency and energy. Our policy tracks the row buffer miss counts of recently used rows in PCM, and caches in DRAM the rows that are predicted to incur frequent row buffer misses. Our proposed caching policy also takes into account the high write latencies of PCM, in addition to row buffer locality. Compared to a conventional DRAM-PCM hybrid memory system, our row buffer locality-aware caching policy improves system performance by 14% and energy efficiency by 10% on data-intensive server and cloud-type workloads. The proposed policy achieves 31% performance gain over an all-PCM memory system, and comes within 29% of the performance of an allDRAM memory system (not taking PCM's capacity benefit into account) on evaluated workloads.\",\"PeriodicalId\":313428,\"journal\":{\"name\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"197\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2012.6378661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 197

摘要

相变存储器(PCM)是一种很有前途的技术,可以提供比DRAM更高的容量。遗憾的是,PCM的访问延迟和能量比DRAM高,而其持久时间较低。许多DRAM-PCM混合存储系统使用DRAM作为PCM的缓存,在利用PCM大容量的同时实现DRAM的低存取延迟和低存取能量、高持久性能。一个关键问题是,在DRAM中缓存哪些数据才能最大限度地利用每种技术的优点,同时尽可能避免其缺点。我们提出了一种新的缓存策略,可以提高混合内存的性能和能源效率。我们的观察是,DRAM和PCM组都使用行缓冲区作为最近访问的内存行的缓存。行缓冲区命中的访问在DRAM和PCM中产生类似的延迟(和能耗),而行缓冲区未命中的访问在PCM中产生更长的延迟(和更高的能耗)。为了利用这一点,我们设计了一种策略,避免访问经常导致行缓冲区丢失的PCM数据,因为这种访问在延迟和能量方面都是昂贵的。我们的策略跟踪PCM中最近使用的行缓冲区丢失计数,并在DRAM中缓存预计会导致频繁的行缓冲区丢失的行。我们提出的缓存策略除了考虑行缓冲区局域性外,还考虑了PCM的高写延迟。与传统的DRAM-PCM混合内存系统相比,在数据密集型服务器和云类型工作负载上,我们的行缓冲区位置感知缓存策略将系统性能提高14%,能源效率提高10%。在评估的工作负载上,建议的策略比全PCM内存系统的性能提高31%,比全dram内存系统的性能提高29%(不考虑PCM的容量优势)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Row buffer locality aware caching policies for hybrid memories
Phase change memory (PCM) is a promising technology that can offer higher capacity than DRAM. Unfortunately, PCM's access latency and energy are higher than DRAM's and its endurance is lower. Many DRAM-PCM hybrid memory systems use DRAM as a cache to PCM, to achieve the low access latency and energy, and high endurance of DRAM, while taking advantage of PCM's large capacity. A key question is what data to cache in DRAM to best exploit the advantages of each technology while avoiding its disadvantages as much as possible. We propose a new caching policy that improves hybrid memory performance and energy efficiency. Our observation is that both DRAM and PCM banks employ row buffers that act as a cache for the most recently accessed memory row. Accesses that are row buffer hits incur similar latencies (and energy consumption) in DRAM and PCM, whereas accesses that are row buffer misses incur longer latencies (and higher energy consumption) in PCM. To exploit this, we devise a policy that avoids accessing in PCM data that frequently causes row buffer misses because such accesses are costly in terms of both latency and energy. Our policy tracks the row buffer miss counts of recently used rows in PCM, and caches in DRAM the rows that are predicted to incur frequent row buffer misses. Our proposed caching policy also takes into account the high write latencies of PCM, in addition to row buffer locality. Compared to a conventional DRAM-PCM hybrid memory system, our row buffer locality-aware caching policy improves system performance by 14% and energy efficiency by 10% on data-intensive server and cloud-type workloads. The proposed policy achieves 31% performance gain over an all-PCM memory system, and comes within 29% of the performance of an allDRAM memory system (not taking PCM's capacity benefit into account) on evaluated workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信