将基于位置的视觉伺服问题转化为凸优化问题

Yuquan Wang, J. Thunberg, Xiaoming Hu
{"title":"将基于位置的视觉伺服问题转化为凸优化问题","authors":"Yuquan Wang, J. Thunberg, Xiaoming Hu","doi":"10.1109/CDC.2012.6426022","DOIUrl":null,"url":null,"abstract":"Here we address the problem of moving a camera from an initial pose to a final pose. The trajectory between the two poses is subject to constraints on the camera motion and the visibility, where we have bounds on the allowed velocities and accelerations of the camera and require that a set of point features are visible for the camera. We assume that the pose is possible to retrieve from the observations of the point features, i.e., we have a Position Based Visual Servoing Problem with constraints. We introduce a two step method that transforms the problem into a convex optimization problem with linear constraints. In the first step the rotational motion is restricted to be of a certain type. This restriction allows us to retrieve an explicit solution of the rotational motion that is optimal in terms of minimizing geodesic distance. Furthermore, this restriction guarantees that the rotational motion satisfies the constraints. Using the explicit solution, we can formulate a convex optimization problem for the translational motion, where we include constraints on workspace and visibility.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A transformation of the Position Based Visual Servoing Problem into a convex optimization problem\",\"authors\":\"Yuquan Wang, J. Thunberg, Xiaoming Hu\",\"doi\":\"10.1109/CDC.2012.6426022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we address the problem of moving a camera from an initial pose to a final pose. The trajectory between the two poses is subject to constraints on the camera motion and the visibility, where we have bounds on the allowed velocities and accelerations of the camera and require that a set of point features are visible for the camera. We assume that the pose is possible to retrieve from the observations of the point features, i.e., we have a Position Based Visual Servoing Problem with constraints. We introduce a two step method that transforms the problem into a convex optimization problem with linear constraints. In the first step the rotational motion is restricted to be of a certain type. This restriction allows us to retrieve an explicit solution of the rotational motion that is optimal in terms of minimizing geodesic distance. Furthermore, this restriction guarantees that the rotational motion satisfies the constraints. Using the explicit solution, we can formulate a convex optimization problem for the translational motion, where we include constraints on workspace and visibility.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6426022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这里,我们解决了移动相机从初始姿势到最终姿势的问题。两个姿态之间的轨迹受到相机运动和可见性的限制,其中我们对相机的允许速度和加速度有限制,并要求相机可以看到一组点特征。我们假设姿态可以从观察到的点特征中检索到,也就是说,我们有一个基于位置的视觉伺服问题。我们引入了一种两步法,将该问题转化为具有线性约束的凸优化问题。在第一步中,旋转运动被限制为某种类型。这个限制允许我们检索旋转运动的显式解,它在最小化测地线距离方面是最优的。进一步,该约束保证了旋转运动满足约束条件。利用显式解,我们可以制定一个平移运动的凸优化问题,其中我们包括工作空间和可见性的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transformation of the Position Based Visual Servoing Problem into a convex optimization problem
Here we address the problem of moving a camera from an initial pose to a final pose. The trajectory between the two poses is subject to constraints on the camera motion and the visibility, where we have bounds on the allowed velocities and accelerations of the camera and require that a set of point features are visible for the camera. We assume that the pose is possible to retrieve from the observations of the point features, i.e., we have a Position Based Visual Servoing Problem with constraints. We introduce a two step method that transforms the problem into a convex optimization problem with linear constraints. In the first step the rotational motion is restricted to be of a certain type. This restriction allows us to retrieve an explicit solution of the rotational motion that is optimal in terms of minimizing geodesic distance. Furthermore, this restriction guarantees that the rotational motion satisfies the constraints. Using the explicit solution, we can formulate a convex optimization problem for the translational motion, where we include constraints on workspace and visibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信