周期时滞微分方程的Walsh函数一元算子逼近

E. Vazquez, J. Collado
{"title":"周期时滞微分方程的Walsh函数一元算子逼近","authors":"E. Vazquez, J. Collado","doi":"10.1109/ICEEE.2016.7751222","DOIUrl":null,"url":null,"abstract":"Using Walsh functions the solution of a linear periodic delay differential equation is approximated. The monodromy operator is then constructed based in the solution obtained. Dominant eigenvalues of the monodromy operator are calculated to determine the stability charts of the delayed Mathieu equation.","PeriodicalId":285464,"journal":{"name":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monodromy operator approximation of periodic delay differential equations by Walsh functions\",\"authors\":\"E. Vazquez, J. Collado\",\"doi\":\"10.1109/ICEEE.2016.7751222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Walsh functions the solution of a linear periodic delay differential equation is approximated. The monodromy operator is then constructed based in the solution obtained. Dominant eigenvalues of the monodromy operator are calculated to determine the stability charts of the delayed Mathieu equation.\",\"PeriodicalId\":285464,\"journal\":{\"name\":\"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2016.7751222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2016.7751222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用Walsh函数逼近了一类线性周期时滞微分方程的解。然后在得到的解的基础上构造单算子。计算了单算子的优势特征值,确定了时滞Mathieu方程的稳定性图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monodromy operator approximation of periodic delay differential equations by Walsh functions
Using Walsh functions the solution of a linear periodic delay differential equation is approximated. The monodromy operator is then constructed based in the solution obtained. Dominant eigenvalues of the monodromy operator are calculated to determine the stability charts of the delayed Mathieu equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信