基于遗传算法的机头锥型加速结构优化设计

Zhenxing Tang, Y. Pei
{"title":"基于遗传算法的机头锥型加速结构优化设计","authors":"Zhenxing Tang, Y. Pei","doi":"10.1109/ISCID.2013.52","DOIUrl":null,"url":null,"abstract":"This paper analyzed the process of optimal design of accelerating structure and described the method of optimal design of accelerating structure based on genetic algorithm (GA). We performed the simulation experiment which is optimal design of the accelerating structure with a nose cone shape using the C++ programming language to write GA program. It proved that the algorithm was feasible and it gave a set of geometric parameter with higher shunt impedance for accelerating structure.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Design of Accelerating Structure with Nose Cone Shape Based on Genetic Algorithm\",\"authors\":\"Zhenxing Tang, Y. Pei\",\"doi\":\"10.1109/ISCID.2013.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzed the process of optimal design of accelerating structure and described the method of optimal design of accelerating structure based on genetic algorithm (GA). We performed the simulation experiment which is optimal design of the accelerating structure with a nose cone shape using the C++ programming language to write GA program. It proved that the algorithm was feasible and it gave a set of geometric parameter with higher shunt impedance for accelerating structure.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了加速结构优化设计的过程,提出了基于遗传算法的加速结构优化设计方法。利用c++编程语言编写遗传算法,对具有鼻锥形状的加速结构进行了优化设计的仿真实验。证明了该算法的可行性,并给出了一组具有较高分流阻抗的加速结构几何参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Design of Accelerating Structure with Nose Cone Shape Based on Genetic Algorithm
This paper analyzed the process of optimal design of accelerating structure and described the method of optimal design of accelerating structure based on genetic algorithm (GA). We performed the simulation experiment which is optimal design of the accelerating structure with a nose cone shape using the C++ programming language to write GA program. It proved that the algorithm was feasible and it gave a set of geometric parameter with higher shunt impedance for accelerating structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信