J. Jeong, S. Kumagai, I. Yamashita, Y. Uraoka, M. Sasaki
{"title":"振动红外MEMS传感器:生物纳米结晶增强扭杆张力的高灵敏度检测应用","authors":"J. Jeong, S. Kumagai, I. Yamashita, Y. Uraoka, M. Sasaki","doi":"10.1109/OMN.2014.6924605","DOIUrl":null,"url":null,"abstract":"A thin-film MEMS infrared (IR) sensor using torsional resonators was developed to achieve high sensitivity. The torsional resonators consisted of bimaterial; a tense Si thin-film and a metal film for IR absorption. Light incidence induced out-of-plane displacement of the resonators thereby shifting the resonant frequency of torsional vibration. To improve the response of the frequency shift, tension in the Si thin-film was enhanced by metal-induced lateral crystallization using biomineralized Ni nanoparticles and a lightweight metal was deposited onto the resonator to obtain flat profile. Response to heat and light incidence were discussed for the fabricated devices.","PeriodicalId":161791,"journal":{"name":"2014 International Conference on Optical MEMS and Nanophotonics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrational IR MEMS sensor: Application of torsion-bars tension-enhanced by bio-nano crystallization for highly sensitive detection\",\"authors\":\"J. Jeong, S. Kumagai, I. Yamashita, Y. Uraoka, M. Sasaki\",\"doi\":\"10.1109/OMN.2014.6924605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thin-film MEMS infrared (IR) sensor using torsional resonators was developed to achieve high sensitivity. The torsional resonators consisted of bimaterial; a tense Si thin-film and a metal film for IR absorption. Light incidence induced out-of-plane displacement of the resonators thereby shifting the resonant frequency of torsional vibration. To improve the response of the frequency shift, tension in the Si thin-film was enhanced by metal-induced lateral crystallization using biomineralized Ni nanoparticles and a lightweight metal was deposited onto the resonator to obtain flat profile. Response to heat and light incidence were discussed for the fabricated devices.\",\"PeriodicalId\":161791,\"journal\":{\"name\":\"2014 International Conference on Optical MEMS and Nanophotonics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Optical MEMS and Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2014.6924605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Optical MEMS and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2014.6924605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibrational IR MEMS sensor: Application of torsion-bars tension-enhanced by bio-nano crystallization for highly sensitive detection
A thin-film MEMS infrared (IR) sensor using torsional resonators was developed to achieve high sensitivity. The torsional resonators consisted of bimaterial; a tense Si thin-film and a metal film for IR absorption. Light incidence induced out-of-plane displacement of the resonators thereby shifting the resonant frequency of torsional vibration. To improve the response of the frequency shift, tension in the Si thin-film was enhanced by metal-induced lateral crystallization using biomineralized Ni nanoparticles and a lightweight metal was deposited onto the resonator to obtain flat profile. Response to heat and light incidence were discussed for the fabricated devices.