人工智能设计对定价的影响

IF 1.2 4区 管理学 Q3 ECONOMICS
John Asker, Chaim Fershtman, Ariel Pakes
{"title":"人工智能设计对定价的影响","authors":"John Asker,&nbsp;Chaim Fershtman,&nbsp;Ariel Pakes","doi":"10.1111/jems.12516","DOIUrl":null,"url":null,"abstract":"<p>The behavior of artificial intelligence (AI) algorithms is shaped by how they learn about their environment. We compare the prices generated by AIs that use different learning protocols when there is market interaction. Asynchronous learning occurs when the AI only learns about the return from the action it took. Synchronous learning occurs when the AI conducts counterfactuals to learn about the returns it would have earned had it taken an alternative action. The two lead to markedly different market prices. When future profits are not given positive weight by the AI, (perfect) synchronous updating leads to competitive pricing, while asynchronous can lead to pricing close to monopoly levels. We investigate how this result varies when either counterfactuals can only be calculated imperfectly and/or when the AI places a weight on future profits. Lastly, we investigate performance differences between offline and online play.</p>","PeriodicalId":47931,"journal":{"name":"Journal of Economics & Management Strategy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of artificial intelligence design on pricing\",\"authors\":\"John Asker,&nbsp;Chaim Fershtman,&nbsp;Ariel Pakes\",\"doi\":\"10.1111/jems.12516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The behavior of artificial intelligence (AI) algorithms is shaped by how they learn about their environment. We compare the prices generated by AIs that use different learning protocols when there is market interaction. Asynchronous learning occurs when the AI only learns about the return from the action it took. Synchronous learning occurs when the AI conducts counterfactuals to learn about the returns it would have earned had it taken an alternative action. The two lead to markedly different market prices. When future profits are not given positive weight by the AI, (perfect) synchronous updating leads to competitive pricing, while asynchronous can lead to pricing close to monopoly levels. We investigate how this result varies when either counterfactuals can only be calculated imperfectly and/or when the AI places a weight on future profits. Lastly, we investigate performance differences between offline and online play.</p>\",\"PeriodicalId\":47931,\"journal\":{\"name\":\"Journal of Economics & Management Strategy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economics & Management Strategy\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jems.12516\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economics & Management Strategy","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jems.12516","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)算法的行为受其学习环境的影响。我们比较了使用不同学习协议的人工智能在市场互动时产生的价格。当人工智能只了解它所采取的行动的回报时,就会进行异步学习。同步学习是指人工智能进行反事实学习,了解如果它采取另一种行动会获得的回报。这两种情况会导致明显不同的市场价格。当人工智能不赋予未来利润正权重时,(完全)同步更新会导致竞争性定价,而异步更新则会导致定价接近垄断水平。我们研究了当反事实只能以不完全的方式计算和/或人工智能对未来利润进行加权时,这一结果有何不同。最后,我们研究了离线游戏和在线游戏的性能差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of artificial intelligence design on pricing

The behavior of artificial intelligence (AI) algorithms is shaped by how they learn about their environment. We compare the prices generated by AIs that use different learning protocols when there is market interaction. Asynchronous learning occurs when the AI only learns about the return from the action it took. Synchronous learning occurs when the AI conducts counterfactuals to learn about the returns it would have earned had it taken an alternative action. The two lead to markedly different market prices. When future profits are not given positive weight by the AI, (perfect) synchronous updating leads to competitive pricing, while asynchronous can lead to pricing close to monopoly levels. We investigate how this result varies when either counterfactuals can only be calculated imperfectly and/or when the AI places a weight on future profits. Lastly, we investigate performance differences between offline and online play.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.30%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信