{"title":"顺序二的微分方程方程解与Runge-Kutta方法四的LC序列电路","authors":"Monalisa E. Rijoly, F. Y. Rumlawang","doi":"10.30598/tensorvol1iss1pp7-14","DOIUrl":null,"url":null,"abstract":"One alternative to solve second order differential equations by numerical methods, specificallynon-liner differential equations is the Runge-Kutta fourth order method. The Runge-Kutta fourth ordermethod is a numerical method that has high degree of precision and accuracy when compared to othernumerical methods. In this paper we will discuss the numerical solution of second order differentialequations on LC series circuit problem using the Runge-Kutta fourth order method. The numericalsolution generated by the computational calculation using the MATLAB program, the strong current andcharge are obtaind from t = 0 and t =0,5 second and different step size values","PeriodicalId":294430,"journal":{"name":"Tensor: Pure and Applied Mathematics Journal","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penyelesaian Numerik Persamaan Diferensial Orde Dua Dengan Metode Runge-Kutta Orde Empat Pada Rangkaian Listrik Seri LC\",\"authors\":\"Monalisa E. Rijoly, F. Y. Rumlawang\",\"doi\":\"10.30598/tensorvol1iss1pp7-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One alternative to solve second order differential equations by numerical methods, specificallynon-liner differential equations is the Runge-Kutta fourth order method. The Runge-Kutta fourth ordermethod is a numerical method that has high degree of precision and accuracy when compared to othernumerical methods. In this paper we will discuss the numerical solution of second order differentialequations on LC series circuit problem using the Runge-Kutta fourth order method. The numericalsolution generated by the computational calculation using the MATLAB program, the strong current andcharge are obtaind from t = 0 and t =0,5 second and different step size values\",\"PeriodicalId\":294430,\"journal\":{\"name\":\"Tensor: Pure and Applied Mathematics Journal\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tensor: Pure and Applied Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30598/tensorvol1iss1pp7-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tensor: Pure and Applied Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30598/tensorvol1iss1pp7-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Penyelesaian Numerik Persamaan Diferensial Orde Dua Dengan Metode Runge-Kutta Orde Empat Pada Rangkaian Listrik Seri LC
One alternative to solve second order differential equations by numerical methods, specificallynon-liner differential equations is the Runge-Kutta fourth order method. The Runge-Kutta fourth ordermethod is a numerical method that has high degree of precision and accuracy when compared to othernumerical methods. In this paper we will discuss the numerical solution of second order differentialequations on LC series circuit problem using the Runge-Kutta fourth order method. The numericalsolution generated by the computational calculation using the MATLAB program, the strong current andcharge are obtaind from t = 0 and t =0,5 second and different step size values