基于多模态无监督域自适应的细粒度自中心动作识别

Xianyuan Liu, Tao Lei, Ping Jiang
{"title":"基于多模态无监督域自适应的细粒度自中心动作识别","authors":"Xianyuan Liu, Tao Lei, Ping Jiang","doi":"10.1109/ITNEC56291.2023.10082267","DOIUrl":null,"url":null,"abstract":"Fine-grained egocentric action recognition has made significant progress because of the advancement of supervised learning. Some real-world applications require the network trained on one dataset to perform well on another unlabeled dataset due to the difficulty of annotating new data. However, due to the disparity in dataset distributions, i.e. domain shift, the network is unable to retain its good performance across datasets. Therefore, in this paper, we use unsupervised domain adaptation to address this difficult challenge, i.e. training a model on labeled source data such that it can be directly used on unlabeled target data with the same categories. First, we use Transformer to capture spatial information, and then we propose a temporal attention module to model temporal interdependence. In consideration of the fact that multi-modal data provides more kinds of important information, we build a tri-stream network for spatio-temporal information fusion. Finally, we align source data with target data using adversarial learning. Our network outperforms the baselines on the largest egocentric dataset, the EPIC-KITCHENS-100 dataset.","PeriodicalId":218770,"journal":{"name":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine-Grained Egocentric Action Recognition with Multi-Modal Unsupervised Domain Adaptation\",\"authors\":\"Xianyuan Liu, Tao Lei, Ping Jiang\",\"doi\":\"10.1109/ITNEC56291.2023.10082267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained egocentric action recognition has made significant progress because of the advancement of supervised learning. Some real-world applications require the network trained on one dataset to perform well on another unlabeled dataset due to the difficulty of annotating new data. However, due to the disparity in dataset distributions, i.e. domain shift, the network is unable to retain its good performance across datasets. Therefore, in this paper, we use unsupervised domain adaptation to address this difficult challenge, i.e. training a model on labeled source data such that it can be directly used on unlabeled target data with the same categories. First, we use Transformer to capture spatial information, and then we propose a temporal attention module to model temporal interdependence. In consideration of the fact that multi-modal data provides more kinds of important information, we build a tri-stream network for spatio-temporal information fusion. Finally, we align source data with target data using adversarial learning. Our network outperforms the baselines on the largest egocentric dataset, the EPIC-KITCHENS-100 dataset.\",\"PeriodicalId\":218770,\"journal\":{\"name\":\"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC56291.2023.10082267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC56291.2023.10082267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

细粒度自我中心行为识别由于监督学习的进步而取得了重大进展。由于标注新数据的困难,一些现实世界的应用需要在一个数据集上训练的网络在另一个未标记的数据集上表现良好。然而,由于数据集分布的差异,即域转移,网络无法在数据集上保持良好的性能。因此,在本文中,我们使用无监督域自适应来解决这一难题,即在标记的源数据上训练模型,使其可以直接用于具有相同类别的未标记目标数据。首先,我们使用Transformer来捕获空间信息,然后我们提出了一个时间关注模块来建模时间依赖性。考虑到多模态数据可以提供更多种类的重要信息,我们构建了三流网络进行时空信息融合。最后,我们使用对抗性学习将源数据与目标数据对齐。我们的网络在最大的自我中心数据集EPIC-KITCHENS-100数据集上的表现优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Grained Egocentric Action Recognition with Multi-Modal Unsupervised Domain Adaptation
Fine-grained egocentric action recognition has made significant progress because of the advancement of supervised learning. Some real-world applications require the network trained on one dataset to perform well on another unlabeled dataset due to the difficulty of annotating new data. However, due to the disparity in dataset distributions, i.e. domain shift, the network is unable to retain its good performance across datasets. Therefore, in this paper, we use unsupervised domain adaptation to address this difficult challenge, i.e. training a model on labeled source data such that it can be directly used on unlabeled target data with the same categories. First, we use Transformer to capture spatial information, and then we propose a temporal attention module to model temporal interdependence. In consideration of the fact that multi-modal data provides more kinds of important information, we build a tri-stream network for spatio-temporal information fusion. Finally, we align source data with target data using adversarial learning. Our network outperforms the baselines on the largest egocentric dataset, the EPIC-KITCHENS-100 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信