客户机-代理-服务器模型中的新动态启发式

Y. Caniou, E. Jeannot
{"title":"客户机-代理-服务器模型中的新动态启发式","authors":"Y. Caniou, E. Jeannot","doi":"10.1109/IPDPS.2003.1213200","DOIUrl":null,"url":null,"abstract":"MCT is a widely used heuristic for scheduling tasks onto Grid platforms. However, when dealing with many tasks, MCT tends to dramatically delay already mapped task completion time, while scheduling a new task. In this paper we propose heuristics based on two features: the historical trace manager that simulates the environment and the perturbation that defines the impact a new allocated task has on already mapped tasks. Our simulations and experiments on a real environment show that the proposed heuristics outperform MCT.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"New dynamic heuristics in the client-agent-server model\",\"authors\":\"Y. Caniou, E. Jeannot\",\"doi\":\"10.1109/IPDPS.2003.1213200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MCT is a widely used heuristic for scheduling tasks onto Grid platforms. However, when dealing with many tasks, MCT tends to dramatically delay already mapped task completion time, while scheduling a new task. In this paper we propose heuristics based on two features: the historical trace manager that simulates the environment and the perturbation that defines the impact a new allocated task has on already mapped tasks. Our simulations and experiments on a real environment show that the proposed heuristics outperform MCT.\",\"PeriodicalId\":177848,\"journal\":{\"name\":\"Proceedings International Parallel and Distributed Processing Symposium\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2003.1213200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

MCT是一种广泛使用的启发式方法,用于在网格平台上调度任务。然而,当处理许多任务时,在调度新任务时,MCT往往会显著延迟已经映射的任务完成时间。在本文中,我们提出了基于两个特征的启发式方法:模拟环境的历史跟踪管理器和定义新分配任务对已映射任务的影响的扰动。我们在真实环境中的模拟和实验表明,所提出的启发式算法优于MCT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New dynamic heuristics in the client-agent-server model
MCT is a widely used heuristic for scheduling tasks onto Grid platforms. However, when dealing with many tasks, MCT tends to dramatically delay already mapped task completion time, while scheduling a new task. In this paper we propose heuristics based on two features: the historical trace manager that simulates the environment and the perturbation that defines the impact a new allocated task has on already mapped tasks. Our simulations and experiments on a real environment show that the proposed heuristics outperform MCT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信