{"title":"新型MC/DC覆盖测试集生成算法及MC/DC设计故障检测强度洞察","authors":"Mohamed A. Salem, K. Eder","doi":"10.1109/MTV.2015.15","DOIUrl":null,"url":null,"abstract":"This paper introduces Modified Condition/Decision Coverage (MC/DC), novel MC/DC coverage test sets generation algorithm named OBSRV, and MC/DC design fault detection strength. The paper presents an overview about MC/DC in terms of the MC/DC definition, MC/DC types, and the conventional MC/DC approaches. It introduces a novel algorithm, called OBSRV, for MC/DC coverage test sets generation. OBSRV resolves MC/DC controllability and observability by using principles found in the D-algorithm that is the foundation for state-of-the-art ATPG. It thereby leverages hardware test principles to advance MC/DC for software, and hardware structural coverage. The paper presents an investigation of the introduced OBSRV algorithm scalability, and complexity to prove its suitability for practical designs. The paper investigates MC/DC functional design faults detection strength, and analyzes empirical results conducted on main design fault classes in microprocessors.","PeriodicalId":273432,"journal":{"name":"2015 16th International Workshop on Microprocessor and SOC Test and Verification (MTV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel MC/DC Coverage Test Sets Generation Algorithm, and MC/DC Design Fault Detection Strength Insights\",\"authors\":\"Mohamed A. Salem, K. Eder\",\"doi\":\"10.1109/MTV.2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Modified Condition/Decision Coverage (MC/DC), novel MC/DC coverage test sets generation algorithm named OBSRV, and MC/DC design fault detection strength. The paper presents an overview about MC/DC in terms of the MC/DC definition, MC/DC types, and the conventional MC/DC approaches. It introduces a novel algorithm, called OBSRV, for MC/DC coverage test sets generation. OBSRV resolves MC/DC controllability and observability by using principles found in the D-algorithm that is the foundation for state-of-the-art ATPG. It thereby leverages hardware test principles to advance MC/DC for software, and hardware structural coverage. The paper presents an investigation of the introduced OBSRV algorithm scalability, and complexity to prove its suitability for practical designs. The paper investigates MC/DC functional design faults detection strength, and analyzes empirical results conducted on main design fault classes in microprocessors.\",\"PeriodicalId\":273432,\"journal\":{\"name\":\"2015 16th International Workshop on Microprocessor and SOC Test and Verification (MTV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Workshop on Microprocessor and SOC Test and Verification (MTV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MTV.2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Workshop on Microprocessor and SOC Test and Verification (MTV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTV.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel MC/DC Coverage Test Sets Generation Algorithm, and MC/DC Design Fault Detection Strength Insights
This paper introduces Modified Condition/Decision Coverage (MC/DC), novel MC/DC coverage test sets generation algorithm named OBSRV, and MC/DC design fault detection strength. The paper presents an overview about MC/DC in terms of the MC/DC definition, MC/DC types, and the conventional MC/DC approaches. It introduces a novel algorithm, called OBSRV, for MC/DC coverage test sets generation. OBSRV resolves MC/DC controllability and observability by using principles found in the D-algorithm that is the foundation for state-of-the-art ATPG. It thereby leverages hardware test principles to advance MC/DC for software, and hardware structural coverage. The paper presents an investigation of the introduced OBSRV algorithm scalability, and complexity to prove its suitability for practical designs. The paper investigates MC/DC functional design faults detection strength, and analyzes empirical results conducted on main design fault classes in microprocessors.