{"title":"航天器地面电气支持设备自动化验收试验的成本影响","authors":"Hien D. Nguyen, I. A. Miller","doi":"10.1109/AUTEST.2011.6058769","DOIUrl":null,"url":null,"abstract":"In today's environment, building a reliable and cost-effective spacecraft is perhaps emphasized more than ever before. Sponsors are looking for the same high-quality products but at lower costs and with shorter schedules. Whether it is a spacecraft for the Department of Defense (DoD), a research observatory for the National Aeronautics and Space Administration (NASA), or a commercial communications satellite, total cost is a significant factor.","PeriodicalId":110721,"journal":{"name":"2011 IEEE AUTOTESTCON","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cost impact of automated acceptance testing of Electrical Ground Support Equipment for spacecraft testing\",\"authors\":\"Hien D. Nguyen, I. A. Miller\",\"doi\":\"10.1109/AUTEST.2011.6058769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's environment, building a reliable and cost-effective spacecraft is perhaps emphasized more than ever before. Sponsors are looking for the same high-quality products but at lower costs and with shorter schedules. Whether it is a spacecraft for the Department of Defense (DoD), a research observatory for the National Aeronautics and Space Administration (NASA), or a commercial communications satellite, total cost is a significant factor.\",\"PeriodicalId\":110721,\"journal\":{\"name\":\"2011 IEEE AUTOTESTCON\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTEST.2011.6058769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2011.6058769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost impact of automated acceptance testing of Electrical Ground Support Equipment for spacecraft testing
In today's environment, building a reliable and cost-effective spacecraft is perhaps emphasized more than ever before. Sponsors are looking for the same high-quality products but at lower costs and with shorter schedules. Whether it is a spacecraft for the Department of Defense (DoD), a research observatory for the National Aeronautics and Space Administration (NASA), or a commercial communications satellite, total cost is a significant factor.