实时3G分组交换核心网的流量负荷预测

P. Svoboda, M. Buerger, M. Rupp
{"title":"实时3G分组交换核心网的流量负荷预测","authors":"P. Svoboda, M. Buerger, M. Rupp","doi":"10.1109/CSNDSP.2008.4610775","DOIUrl":null,"url":null,"abstract":"In this paper we analyze different methods for long term forecasts of packet switched traffic from live 3G networks. The dataset consists of over 400 values, each representing the peak load for a separate day. Four different methods were applied to forecast the increase in traffic, two simple: linear and exponential regression, and two more sophisticated ARMA and DHR. We will show in which cases the sophisticated models deliver a better performance and discuss the question if the gain is significant to justify the increased complexity. We present numerical results for long, e.g., more than 100 day, and short time,e.g., hourly or daily, fitting for our case study based on real traces from a live network. The paper concludes with a benchmark based on the observed mean absolute error.","PeriodicalId":241330,"journal":{"name":"2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Forecasting of traffic load in a live 3G packet switched core network\",\"authors\":\"P. Svoboda, M. Buerger, M. Rupp\",\"doi\":\"10.1109/CSNDSP.2008.4610775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze different methods for long term forecasts of packet switched traffic from live 3G networks. The dataset consists of over 400 values, each representing the peak load for a separate day. Four different methods were applied to forecast the increase in traffic, two simple: linear and exponential regression, and two more sophisticated ARMA and DHR. We will show in which cases the sophisticated models deliver a better performance and discuss the question if the gain is significant to justify the increased complexity. We present numerical results for long, e.g., more than 100 day, and short time,e.g., hourly or daily, fitting for our case study based on real traces from a live network. The paper concludes with a benchmark based on the observed mean absolute error.\",\"PeriodicalId\":241330,\"journal\":{\"name\":\"2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP.2008.4610775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP.2008.4610775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们分析了对实时3G网络的分组交换流量进行长期预测的不同方法。数据集由400多个值组成,每个值代表单独一天的峰值负载。应用了四种不同的方法来预测流量的增长,其中两种简单:线性回归和指数回归,以及两种更复杂的ARMA和DHR。我们将展示在哪些情况下复杂的模型提供了更好的性能,并讨论增益是否足以证明增加的复杂性是合理的问题。我们给出了长时间的数值结果,例如100天以上,短时间的数值结果,例如100天以上。,每小时或每天,符合我们的案例研究,基于现场网络的真实痕迹。最后给出了一个基于观测到的平均绝对误差的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting of traffic load in a live 3G packet switched core network
In this paper we analyze different methods for long term forecasts of packet switched traffic from live 3G networks. The dataset consists of over 400 values, each representing the peak load for a separate day. Four different methods were applied to forecast the increase in traffic, two simple: linear and exponential regression, and two more sophisticated ARMA and DHR. We will show in which cases the sophisticated models deliver a better performance and discuss the question if the gain is significant to justify the increased complexity. We present numerical results for long, e.g., more than 100 day, and short time,e.g., hourly or daily, fitting for our case study based on real traces from a live network. The paper concludes with a benchmark based on the observed mean absolute error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信