基于群体的功能模板先验正则化PET重建

Philip Novosad, A. Reader
{"title":"基于群体的功能模板先验正则化PET重建","authors":"Philip Novosad, A. Reader","doi":"10.1109/NSSMIC.2014.7430938","DOIUrl":null,"url":null,"abstract":"We outline a possible method for exploiting population-based data for regularization in iterative PET reconstruction. Multi-modal and high-resolution mean shape templates are derived from a set of co-registered PET-MR images. The functional component of the template, representing the average radiotracer distribution among the images in the set, is used in a Bayesian reconstruction scheme for regularization of a given image. Unlike conventional anatomical-based priors, our proposed method makes no assumptions about relations between anatomy and function. Instead of regularizing based on differences between anatomy and function, we regularize based on differences between a mean functional image and a given functional image. Our proposed method outperforms both conventional MLEM and quadratic priors.","PeriodicalId":144711,"journal":{"name":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Population-based functional template priors for regularized PET reconstruction\",\"authors\":\"Philip Novosad, A. Reader\",\"doi\":\"10.1109/NSSMIC.2014.7430938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We outline a possible method for exploiting population-based data for regularization in iterative PET reconstruction. Multi-modal and high-resolution mean shape templates are derived from a set of co-registered PET-MR images. The functional component of the template, representing the average radiotracer distribution among the images in the set, is used in a Bayesian reconstruction scheme for regularization of a given image. Unlike conventional anatomical-based priors, our proposed method makes no assumptions about relations between anatomy and function. Instead of regularizing based on differences between anatomy and function, we regularize based on differences between a mean functional image and a given functional image. Our proposed method outperforms both conventional MLEM and quadratic priors.\",\"PeriodicalId\":144711,\"journal\":{\"name\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2014.7430938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2014.7430938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们概述了一种利用基于种群的数据在迭代PET重建中进行正则化的可能方法。多模态和高分辨率的平均形状模板是从一组共配准的PET-MR图像中导出的。模板的功能分量表示集合中图像中放射性示踪剂的平均分布,用于贝叶斯重构方案对给定图像进行正则化。与传统的基于解剖的先验不同,我们提出的方法没有假设解剖和功能之间的关系。我们不是基于解剖和功能之间的差异进行正则化,而是基于平均函数图像和给定函数图像之间的差异进行正则化。我们提出的方法优于传统的MLEM和二次先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population-based functional template priors for regularized PET reconstruction
We outline a possible method for exploiting population-based data for regularization in iterative PET reconstruction. Multi-modal and high-resolution mean shape templates are derived from a set of co-registered PET-MR images. The functional component of the template, representing the average radiotracer distribution among the images in the set, is used in a Bayesian reconstruction scheme for regularization of a given image. Unlike conventional anatomical-based priors, our proposed method makes no assumptions about relations between anatomy and function. Instead of regularizing based on differences between anatomy and function, we regularize based on differences between a mean functional image and a given functional image. Our proposed method outperforms both conventional MLEM and quadratic priors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信