小波与径向基神经网络在感应电动机早期故障诊断中的应用研究

P. Bhowmik, S. Pradhan, M. Prakash, S. Roy
{"title":"小波与径向基神经网络在感应电动机早期故障诊断中的应用研究","authors":"P. Bhowmik, S. Pradhan, M. Prakash, S. Roy","doi":"10.1109/CCUBE.2013.6718555","DOIUrl":null,"url":null,"abstract":"One of the most important tasks in industries is considered to be the condition monitoring of induction motors. However, most of the traditional methods employed for this purpose suffer from certain limitations in accomplishing this task. A successful implementation of condition monitoring requires the development of a simple but reliable detector of various faults. This paper investigates the performance of Discrete Wavelet Transform and Radial Basis Function based Neural Network for incipient stator fault diagnosis in induction motors. Wavelet analysis helps in the extraction of important features from the faulty signal and neural network classifies the fault type depending on the nature of fault. A mean absolute percentage error of 1.4236% between the actual values and the predicted values by the neural network show the effectiveness of the proposed approach.","PeriodicalId":194102,"journal":{"name":"2013 International conference on Circuits, Controls and Communications (CCUBE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Investigation of wavelets and radial basis function neural network for incipient fault diagnosis in induction motors\",\"authors\":\"P. Bhowmik, S. Pradhan, M. Prakash, S. Roy\",\"doi\":\"10.1109/CCUBE.2013.6718555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important tasks in industries is considered to be the condition monitoring of induction motors. However, most of the traditional methods employed for this purpose suffer from certain limitations in accomplishing this task. A successful implementation of condition monitoring requires the development of a simple but reliable detector of various faults. This paper investigates the performance of Discrete Wavelet Transform and Radial Basis Function based Neural Network for incipient stator fault diagnosis in induction motors. Wavelet analysis helps in the extraction of important features from the faulty signal and neural network classifies the fault type depending on the nature of fault. A mean absolute percentage error of 1.4236% between the actual values and the predicted values by the neural network show the effectiveness of the proposed approach.\",\"PeriodicalId\":194102,\"journal\":{\"name\":\"2013 International conference on Circuits, Controls and Communications (CCUBE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International conference on Circuits, Controls and Communications (CCUBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCUBE.2013.6718555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International conference on Circuits, Controls and Communications (CCUBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCUBE.2013.6718555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

感应电动机的状态监测被认为是工业中最重要的任务之一。然而,用于此目的的大多数传统方法在完成此任务时都存在某些局限性。状态监测的成功实施需要开发一种简单而可靠的各种故障检测器。研究了离散小波变换和基于径向基函数的神经网络在异步电动机定子早期故障诊断中的性能。小波分析有助于从故障信号中提取重要特征,神经网络根据故障的性质对故障类型进行分类。实际值与神经网络预测值的平均绝对百分比误差为1.426%,表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of wavelets and radial basis function neural network for incipient fault diagnosis in induction motors
One of the most important tasks in industries is considered to be the condition monitoring of induction motors. However, most of the traditional methods employed for this purpose suffer from certain limitations in accomplishing this task. A successful implementation of condition monitoring requires the development of a simple but reliable detector of various faults. This paper investigates the performance of Discrete Wavelet Transform and Radial Basis Function based Neural Network for incipient stator fault diagnosis in induction motors. Wavelet analysis helps in the extraction of important features from the faulty signal and neural network classifies the fault type depending on the nature of fault. A mean absolute percentage error of 1.4236% between the actual values and the predicted values by the neural network show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信