程序间程序转换提高数值精度

Nasrine Damouche, M. Martel, Alexandre Chapoutot
{"title":"程序间程序转换提高数值精度","authors":"Nasrine Damouche, M. Martel, Alexandre Chapoutot","doi":"10.1145/3078659.3078662","DOIUrl":null,"url":null,"abstract":"Floating-point numbers are used to approximate the exact real numbers in a wide range of domains like numerical simulations, embedded software, etc. However, floating-point numbers are a finite approximation of real numbers. In practice, this approximation may introduce round-off errors and this can lead to catastrophic results. To cope with this issue, we have developed a tool which corrects partly these round-off errors and which consequently improves the numerical accuracy of computations by automatically transforming programs in a source to source manner. Our transformation, relies on static analysis by abstract interpretation and operates on pieces of code with assignments, conditionals and loops. In former work, we have focused on the intraprocedural transformation of programs and, in this article, we introduce the interprocedural transformation to improve accuracy.","PeriodicalId":240210,"journal":{"name":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Numerical Accuracy Improvement by Interprocedural Program Transformation\",\"authors\":\"Nasrine Damouche, M. Martel, Alexandre Chapoutot\",\"doi\":\"10.1145/3078659.3078662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating-point numbers are used to approximate the exact real numbers in a wide range of domains like numerical simulations, embedded software, etc. However, floating-point numbers are a finite approximation of real numbers. In practice, this approximation may introduce round-off errors and this can lead to catastrophic results. To cope with this issue, we have developed a tool which corrects partly these round-off errors and which consequently improves the numerical accuracy of computations by automatically transforming programs in a source to source manner. Our transformation, relies on static analysis by abstract interpretation and operates on pieces of code with assignments, conditionals and loops. In former work, we have focused on the intraprocedural transformation of programs and, in this article, we introduce the interprocedural transformation to improve accuracy.\",\"PeriodicalId\":240210,\"journal\":{\"name\":\"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078659.3078662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078659.3078662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在数值模拟、嵌入式软件等广泛的领域中,浮点数被用来近似精确的实数。然而,浮点数是实数的有限近似值。在实践中,这种近似可能会引入舍入误差,从而导致灾难性的结果。为了解决这个问题,我们开发了一种工具,它可以部分地纠正这些舍入误差,从而通过以源到源的方式自动转换程序来提高计算的数值精度。我们的转换依赖于抽象解释的静态分析,并对带有赋值、条件和循环的代码片段进行操作。在以前的工作中,我们专注于程序的过程内转换,在本文中,我们介绍了过程间转换以提高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Accuracy Improvement by Interprocedural Program Transformation
Floating-point numbers are used to approximate the exact real numbers in a wide range of domains like numerical simulations, embedded software, etc. However, floating-point numbers are a finite approximation of real numbers. In practice, this approximation may introduce round-off errors and this can lead to catastrophic results. To cope with this issue, we have developed a tool which corrects partly these round-off errors and which consequently improves the numerical accuracy of computations by automatically transforming programs in a source to source manner. Our transformation, relies on static analysis by abstract interpretation and operates on pieces of code with assignments, conditionals and loops. In former work, we have focused on the intraprocedural transformation of programs and, in this article, we introduce the interprocedural transformation to improve accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信