基于泰勒模型和椭球微积分的非线性微分方程积分算法

B. Houska, M. E. Villanueva, B. Chachuat
{"title":"基于泰勒模型和椭球微积分的非线性微分方程积分算法","authors":"B. Houska, M. E. Villanueva, B. Chachuat","doi":"10.1109/CDC.2013.6759928","DOIUrl":null,"url":null,"abstract":"This paper presents a novel algorithm for bounding the reachable set of parametric nonlinear differential equations. This algorithm is based on a first-discretize-then-bound approach to enclose the reachable set via propagation of a Taylor model with ellipsoidal remainder, and it accounts for truncation errors that are inherent to the discretization. In contrast to existing algorithms that proceed in two phases-an a priori enclosure phase, followed by a tightening phase-the proposed algorithm first predicts a continuous-time enclosure and then seeks a maximal step-size for which validity of the predicted enclosure can be established. It is shown that this reversed approach leads to a natural step-size control mechanism, which no longer relies on the availability of an a priori enclosure. Also described in the paper is an open-source implementation of the algorithm in ACADO Toolkit. A simple numerical case study is presented to illustrate the performance and stability of the algorithm.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus\",\"authors\":\"B. Houska, M. E. Villanueva, B. Chachuat\",\"doi\":\"10.1109/CDC.2013.6759928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel algorithm for bounding the reachable set of parametric nonlinear differential equations. This algorithm is based on a first-discretize-then-bound approach to enclose the reachable set via propagation of a Taylor model with ellipsoidal remainder, and it accounts for truncation errors that are inherent to the discretization. In contrast to existing algorithms that proceed in two phases-an a priori enclosure phase, followed by a tightening phase-the proposed algorithm first predicts a continuous-time enclosure and then seeks a maximal step-size for which validity of the predicted enclosure can be established. It is shown that this reversed approach leads to a natural step-size control mechanism, which no longer relies on the availability of an a priori enclosure. Also described in the paper is an open-source implementation of the algorithm in ACADO Toolkit. A simple numerical case study is presented to illustrate the performance and stability of the algorithm.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6759928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6759928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

提出了一种求解参数非线性微分方程可达集边界的新算法。该算法基于先离散后约束的方法,通过带有椭球体余数的泰勒模型的传播来封闭可达集,并且它考虑了离散化所固有的截断误差。现有算法分两个阶段进行——一个先验的封闭阶段,然后是一个紧缩阶段——与此相反,本文提出的算法首先预测一个连续时间的封闭,然后寻求一个最大步长,以确定预测的封闭的有效性。研究表明,这种相反的方法导致了一种自然的步长控制机制,它不再依赖于先验封闭的可用性。本文还描述了该算法在ACADO Toolkit中的开源实现。通过一个简单的算例分析,说明了该算法的性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus
This paper presents a novel algorithm for bounding the reachable set of parametric nonlinear differential equations. This algorithm is based on a first-discretize-then-bound approach to enclose the reachable set via propagation of a Taylor model with ellipsoidal remainder, and it accounts for truncation errors that are inherent to the discretization. In contrast to existing algorithms that proceed in two phases-an a priori enclosure phase, followed by a tightening phase-the proposed algorithm first predicts a continuous-time enclosure and then seeks a maximal step-size for which validity of the predicted enclosure can be established. It is shown that this reversed approach leads to a natural step-size control mechanism, which no longer relies on the availability of an a priori enclosure. Also described in the paper is an open-source implementation of the algorithm in ACADO Toolkit. A simple numerical case study is presented to illustrate the performance and stability of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信