基于OpenMP的并行SMO算法实现

Peng-Yuan Chang, Zhuo Bi, Yiyong Feng
{"title":"基于OpenMP的并行SMO算法实现","authors":"Peng-Yuan Chang, Zhuo Bi, Yiyong Feng","doi":"10.1109/ICSSE.2014.6887941","DOIUrl":null,"url":null,"abstract":"Sequential minimal optimization (SMO) algorithm is widely used for solving the optimization problem during the training process of support vector machine (SVM). However, the SMO algorithm is quite time-consuming when handling very large training sets and thus limits the performance of SVM. In this paper, a parallel implementation of SMO algorithm is designed with OpenMP, basing on the running time analysis of each function in SMO. Experimental results show that the performance for training SVM had been improved with parallel SMO when dealing with large datasets.","PeriodicalId":166215,"journal":{"name":"2014 IEEE International Conference on System Science and Engineering (ICSSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Parallel SMO algorithm implementation based on OpenMP\",\"authors\":\"Peng-Yuan Chang, Zhuo Bi, Yiyong Feng\",\"doi\":\"10.1109/ICSSE.2014.6887941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential minimal optimization (SMO) algorithm is widely used for solving the optimization problem during the training process of support vector machine (SVM). However, the SMO algorithm is quite time-consuming when handling very large training sets and thus limits the performance of SVM. In this paper, a parallel implementation of SMO algorithm is designed with OpenMP, basing on the running time analysis of each function in SMO. Experimental results show that the performance for training SVM had been improved with parallel SMO when dealing with large datasets.\",\"PeriodicalId\":166215,\"journal\":{\"name\":\"2014 IEEE International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE.2014.6887941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2014.6887941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

序列最小优化算法(SMO)被广泛用于解决支持向量机(SVM)训练过程中的优化问题。然而,SMO算法在处理非常大的训练集时非常耗时,从而限制了支持向量机的性能。本文在分析SMO中各函数运行时间的基础上,利用OpenMP设计了SMO算法的并行实现。实验结果表明,在处理大型数据集时,采用并行SMO方法可以提高SVM的训练性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel SMO algorithm implementation based on OpenMP
Sequential minimal optimization (SMO) algorithm is widely used for solving the optimization problem during the training process of support vector machine (SVM). However, the SMO algorithm is quite time-consuming when handling very large training sets and thus limits the performance of SVM. In this paper, a parallel implementation of SMO algorithm is designed with OpenMP, basing on the running time analysis of each function in SMO. Experimental results show that the performance for training SVM had been improved with parallel SMO when dealing with large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信