基于q -学习方法的未知线性网络控制系统随机最优控制

Hao Xu, S. Jagannathan
{"title":"基于q -学习方法的未知线性网络控制系统随机最优控制","authors":"Hao Xu, S. Jagannathan","doi":"10.1109/ACC.2011.5991278","DOIUrl":null,"url":null,"abstract":"In this paper, the Bellman equation is utilized forward-in-time for the stochastic optimal control of Networked Control System (NCS) with unknown system dynamics in the presence of random delays and packet losses which are unknown. The proposed stochastic optimal control approach, referred normally as adaptive dynamic programming, uses an adaptive estimator (AE) and ideas from Q-learning to solve the infinite horizon optimal regulation control of NCS with unknown system dynamics. Update laws for tuning the unknown parameters of the adaptive estimator (AE) online to obtain the time-based Q-function are derived. Lyapunov theory is used to show that all signals are asymptotically stable (AS) and that the approximated control signals converge to optimal control inputs. Simulation results are included to show the effectiveness of the proposed scheme.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stochastic optimal control of unknown linear networked control system using Q-learning methodology\",\"authors\":\"Hao Xu, S. Jagannathan\",\"doi\":\"10.1109/ACC.2011.5991278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Bellman equation is utilized forward-in-time for the stochastic optimal control of Networked Control System (NCS) with unknown system dynamics in the presence of random delays and packet losses which are unknown. The proposed stochastic optimal control approach, referred normally as adaptive dynamic programming, uses an adaptive estimator (AE) and ideas from Q-learning to solve the infinite horizon optimal regulation control of NCS with unknown system dynamics. Update laws for tuning the unknown parameters of the adaptive estimator (AE) online to obtain the time-based Q-function are derived. Lyapunov theory is used to show that all signals are asymptotically stable (AS) and that the approximated control signals converge to optimal control inputs. Simulation results are included to show the effectiveness of the proposed scheme.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将Bellman方程应用于具有未知系统动力学的网络控制系统(NCS)的随机最优控制,其中存在未知的随机延迟和丢包。提出的随机最优控制方法,通常称为自适应动态规划,使用自适应估计器(AE)和q -学习的思想来解决未知系统动态的NCS的无限水平最优调节控制问题。导出了在线调整自适应估计器的未知参数以获得基于时间的q函数的更新规律。利用李雅普诺夫理论证明了所有信号都是渐近稳定的,并且逼近的控制信号收敛于最优控制输入。仿真结果表明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic optimal control of unknown linear networked control system using Q-learning methodology
In this paper, the Bellman equation is utilized forward-in-time for the stochastic optimal control of Networked Control System (NCS) with unknown system dynamics in the presence of random delays and packet losses which are unknown. The proposed stochastic optimal control approach, referred normally as adaptive dynamic programming, uses an adaptive estimator (AE) and ideas from Q-learning to solve the infinite horizon optimal regulation control of NCS with unknown system dynamics. Update laws for tuning the unknown parameters of the adaptive estimator (AE) online to obtain the time-based Q-function are derived. Lyapunov theory is used to show that all signals are asymptotically stable (AS) and that the approximated control signals converge to optimal control inputs. Simulation results are included to show the effectiveness of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信