基于非均质元模型集成的沿海含水层可靠性管理

D. Roy, B. Datta
{"title":"基于非均质元模型集成的沿海含水层可靠性管理","authors":"D. Roy, B. Datta","doi":"10.1109/SUSTECH.2018.8671344","DOIUrl":null,"url":null,"abstract":"This study proposes a weighted average heterogeneous ensemble of meta-models for approximating seawater intrusion phenomena in coastal aquifer systems. Root mean square error criterion of standalone meta-models is used to assign the corresponding weight to each meta-model. Results indicate that the ensemble model’s prediction is better than all considered meta-models except the best model in the ensemble. In the next step, individual meta-models are combined with a multiple objective optimization algorithm within the framework of multiple realization optimization to develop reliability based management models for coastal aquifers. Four different reliability levels (0.99, 0.83, 0.67, and 0.5) are considered. It is observed from the Pareto optimal fronts of the management models that total objective function value (total production well pumping for beneficial purposes) decreases as the reliability increases. A demonstrative multilayered coastal aquifer system is selected for assessing the suitability of the evaluated methodology. Results obtained demonstrate the capability of this approach to develop a reliable management strategy in mitigating the extent salinity intrusion in coastal aquifer systems.","PeriodicalId":127111,"journal":{"name":"2018 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability Based Management of Coastal Aquifers Using Heterogeneous Ensemble of Meta-models\",\"authors\":\"D. Roy, B. Datta\",\"doi\":\"10.1109/SUSTECH.2018.8671344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a weighted average heterogeneous ensemble of meta-models for approximating seawater intrusion phenomena in coastal aquifer systems. Root mean square error criterion of standalone meta-models is used to assign the corresponding weight to each meta-model. Results indicate that the ensemble model’s prediction is better than all considered meta-models except the best model in the ensemble. In the next step, individual meta-models are combined with a multiple objective optimization algorithm within the framework of multiple realization optimization to develop reliability based management models for coastal aquifers. Four different reliability levels (0.99, 0.83, 0.67, and 0.5) are considered. It is observed from the Pareto optimal fronts of the management models that total objective function value (total production well pumping for beneficial purposes) decreases as the reliability increases. A demonstrative multilayered coastal aquifer system is selected for assessing the suitability of the evaluated methodology. Results obtained demonstrate the capability of this approach to develop a reliable management strategy in mitigating the extent salinity intrusion in coastal aquifer systems.\",\"PeriodicalId\":127111,\"journal\":{\"name\":\"2018 IEEE Conference on Technologies for Sustainability (SusTech)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Technologies for Sustainability (SusTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUSTECH.2018.8671344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUSTECH.2018.8671344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种加权平均非均质集合元模型来模拟沿海含水层系统中的海水入侵现象。采用独立元模型的均方根误差准则为每个元模型分配相应的权重。结果表明,除了集成模型中最优模型外,集成模型的预测效果优于所有考虑的元模型。下一步,在多实现优化框架下,将单个元模型与多目标优化算法相结合,建立基于可靠性的沿海含水层管理模型。考虑了四种不同的信度水平(0.99、0.83、0.67和0.5)。从管理模型的帕累托最优前沿观察到,总目标函数值(为有益目的的采出油井总量)随着可靠性的增加而减小。选择了一个示范性的多层沿海含水层系统来评估评价方法的适用性。所获得的结果表明,该方法能够制定可靠的管理策略,以减轻沿海含水层系统的盐度入侵程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability Based Management of Coastal Aquifers Using Heterogeneous Ensemble of Meta-models
This study proposes a weighted average heterogeneous ensemble of meta-models for approximating seawater intrusion phenomena in coastal aquifer systems. Root mean square error criterion of standalone meta-models is used to assign the corresponding weight to each meta-model. Results indicate that the ensemble model’s prediction is better than all considered meta-models except the best model in the ensemble. In the next step, individual meta-models are combined with a multiple objective optimization algorithm within the framework of multiple realization optimization to develop reliability based management models for coastal aquifers. Four different reliability levels (0.99, 0.83, 0.67, and 0.5) are considered. It is observed from the Pareto optimal fronts of the management models that total objective function value (total production well pumping for beneficial purposes) decreases as the reliability increases. A demonstrative multilayered coastal aquifer system is selected for assessing the suitability of the evaluated methodology. Results obtained demonstrate the capability of this approach to develop a reliable management strategy in mitigating the extent salinity intrusion in coastal aquifer systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信