M. Kudryavtsev, S. Gorgi Zadeh, J. Korvink, T. Bechtold
{"title":"磁共振微传感器的紧凑参数化模型","authors":"M. Kudryavtsev, S. Gorgi Zadeh, J. Korvink, T. Bechtold","doi":"10.1109/EUROSIME.2015.7103092","DOIUrl":null,"url":null,"abstract":"This work presents the application of mathematical methods of parametric model order reduction (pMOR) for automatic generation of the highly accurate, parametric compact models of radio-frequency micro-devices. More specifically, the miniaturized Faraday-induction-based magnetic resonance sensor is considered. Unlike conventional approaches, when magnetic resonance sensor is represented by a lumped-element-based compact model, mathematical pMOR methods are formal, robust and can be performed in an automated way. The introduced parametrization allows producing compact models that are valid over the range of desired parameter's values without the need to repeat the reduction.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A compact parametric model of magnetic resonance micro sensor\",\"authors\":\"M. Kudryavtsev, S. Gorgi Zadeh, J. Korvink, T. Bechtold\",\"doi\":\"10.1109/EUROSIME.2015.7103092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the application of mathematical methods of parametric model order reduction (pMOR) for automatic generation of the highly accurate, parametric compact models of radio-frequency micro-devices. More specifically, the miniaturized Faraday-induction-based magnetic resonance sensor is considered. Unlike conventional approaches, when magnetic resonance sensor is represented by a lumped-element-based compact model, mathematical pMOR methods are formal, robust and can be performed in an automated way. The introduced parametrization allows producing compact models that are valid over the range of desired parameter's values without the need to repeat the reduction.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compact parametric model of magnetic resonance micro sensor
This work presents the application of mathematical methods of parametric model order reduction (pMOR) for automatic generation of the highly accurate, parametric compact models of radio-frequency micro-devices. More specifically, the miniaturized Faraday-induction-based magnetic resonance sensor is considered. Unlike conventional approaches, when magnetic resonance sensor is represented by a lumped-element-based compact model, mathematical pMOR methods are formal, robust and can be performed in an automated way. The introduced parametrization allows producing compact models that are valid over the range of desired parameter's values without the need to repeat the reduction.